

АНАЛИЗАТОР КРЕМНИЯ МАРК-1202

Руководство по эксплуатации ВР79.00.000РЭ

г. Нижний Новгород 2022 г.

OOO «ВЗОР» будет благодарно за любые предложения и замечания, направленные на улучшение качества анализатора кремния.

При возникновении любых затруднений при работе с анализатором кремния обращайтесь к нам письменно или по телефону.

почтовый адрес 603000 г. Н.Новгород, а/я 80

отдел маркетинга (831) 282-98-00

market@vzor.nnov.ru

сервисный центр (831) 282-98-02

service@vzor.nnov.ru

http: www.vzornn.ru

Система менеджмента качества предприятия сертифицирована на соответствие требованиям ГОСТ Р ИСО 9001-2015.

В изделии допускаются незначительные конструктивные изменения, не отраженные в настоящем документе и не влияющие на технические характеристики и правила эксплуатации.

СОДЕРЖАНИЕ

1 Описание и работа	5
1.1 Назначение изделия	5
1.2 Технические характеристики	8
1.3 Состав изделия	11
1.4 Устройство и принцип работы	11
1.5 Средства измерения, инструмент и принадлежности	27
1.6 Маркировка	28
1.7 Упаковка	31
2 Использование по назначению	
2.1 Эксплуатационные ограничения	32
2.2 Меры безопасности	32
2.3 Подготовка анализатора к использованию	32
2.4 Градуировка анализатора	. 54
2.5 Проведение измерений	57
2.6 Промывка анализатора	. 58
2.7 Перерыв в работе анализатора	58
2.8 Управление уровнем доступа	56
2.9 Возможные неисправности, ошибки, предупреждения и методы	ИХ
устранения	59
3 Техническое обслуживание	64
4 Текущий ремонт	75
5 Транспортирование	76
6 Хранение	77
Приложение А. Методика поверки	78
Приложение Б. Методика приготовления контрольных растворов	. 94
Приложение В. Методика приготовления реактивов	
Приложение Г. Экраны анализатора	
Приложение Д. Схемы расположения разъемов	
Приложение Е. Инструкция по установке трубки в штуцер ШППТ-6-6F	
Приложение Ж. Протокол обмена с внешним устройством по цифров	
интерфейсу Modbus RTU	

Настоящий документ является совмещенным и включает методику поверки.

Руководство предназначено для изучения технических характеристик анализатора кремния MAPK-1202 (в дальнейшем – анализатор) и правил его эксплуатации.

Анализатор соответствует требованиям ТУ 26.51.53-051-39232169-2020, комплекта конструкторской документации ВР79.00.000 и ГОСТ 22729-84.

- 1 ВНИМАНИЕ: Составные части конструкции анализатора содержат стекло. Его необходимо ОБЕРЕГАТЬ ОТ УДАРОВ!
- 2 ВНИМАНИЕ: Анализатор кремния МАРК-1202 ДОЛЖЕН БЫТЬ ЗАЗЕМЛЕН, в противном случае возможен выход прибора из строя!
- 3 ВНИМАНИЕ: НЕ ОТКЛЮЧАТЬ питание анализатора кремния МАРК-1202 до окончания загрузки (до появления экрана в соответствии с рисунком Г.28ж)!

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

1.1.1 Наименование и обозначение изделия

Обозначение анализатора состоит из обозначения исполнения анализатора и обозначения ТУ. Обозначение исполнения анализатора:

MAI	$\underline{PK-1202} - \underline{X} - \underline{X} \underline{X^*} \underline{X}$
Наименование анализатора	
Исполнение анализатора по способу установки блока преобразовательного:	
корпусной – «К»; настенный – «Н»;	
настенный — «П», щитовой — «Щ».	
Исполнение анализатора по наличию панели переклю	очения пробы:
отсутствует – «0»; присутствует – «П».	
Исполнение анализатора по количеству каналов пр	обы:
один канал – «1»; 	
шесть каналов – «6».	
Исполнение анализатора по наличию блока сигнал	изации:
блок сигнализации отсутствует – «0»;	
блок сигнализации присутствует – «С».	

<u>Примечание</u> – «*» – «Х» не может быть «1», если в составе анализатора присутствует панель переключения пробы (в обозначении – «П»).

Пример обозначения анализатора:

Анализатор, в составе которого присутствуют блок преобразовательный корпусного исполнения, панель переключения пробы с шестью каналами и блок сигнализации.

Анализатор кремния МАРК-1202-К-П6С ТУ 26.51.53-051-39232169-2020.

- 1.1.2 Анализатор кремния MAPK-1202 предназначен для автоматического измерения массовой концентрации кремниевой кислоты в пересчете на диоксид кремния SiO_2 (в дальнейшем SiO_2) и температуры водных сред.
- 1.1.3 Область применения анализатора контроль содержания кремниевой кислоты в технологических водах на объектах энергетики и водоподготовительных установках.
 - 1.1.4 Тип анализатора:
 - фотометрический;
 - микропроцессорный;
 - проточный;
- непрерывно-циклического действия с возможностью измерения SiO_2 в пробе, отобранной вручную;
- одноканальный с возможностью подключения до шести пробоотборных линий.
- 1.1.5 По устойчивости к климатическим воздействиям анализатор имеет исполнение по ГОСТ 15150-69 УХЛ4.2, при этом температура окружающего воздуха при эксплуатации может быть от плюс 5 °C до плюс 50 °C.
- 1.1.6 По устойчивости к климатическим воздействиям группа исполнения анализатора по ГОСТ Р 52931-2008 В4.
- 1.1.7 По устойчивости к механическим воздействиям исполнение анализатора по ГОСТ Р 52931-2008 L1.
- 1.1.8 По устойчивости к воздействию атмосферного давления исполнение анализатора по ГОСТ Р 52931-2008 Р1.
 - 1.1.9 Параметры анализируемой среды
 - 1.1.9.1 Температура анализируемой среды, °С от плюс 5 до плюс 50.
 - 1.1.9.2 Давление анализируемой среды, МПа, не более:

 - максимально допустимое:

 - 1.1.10 Рабочие условия эксплуатации
 - 1.1.10.1 Температура окружающего воздуха, °С от плюс 5 до плюс 50.
- - 1.1.10.3 Атмосферное давление, кПа (мм рт.ст.) от 84,0 до 106,7 (от 630 до 800).
- 1.1.11 Электрическое питание анализатора и блока преобразовательного (для исполнений MAPK-1202-H-XXX и MAPK-1202-Щ-XXX) должно осуществляться от сети переменного тока напряжением 220 В при частоте (50 ± 1) Гц с допускаемым отклонением напряжения питания от минус 15 до плюс 10 % через источник постоянного тока ИП-1002 с выходным напряжением ($24 \pm 2,4$) В.

- 1.1.13 Электрическое сопротивление изоляции цепей питания анализатора между штырями вилки и металлическими частями анализатора, МОм, не менее:
- 1.1.14 Электрическая изоляция силовых цепей питания анализатора по отношению к анализатору (металлическим частям) выдерживает в течение 1 мин испытательное напряжение 1,5 кВ синусоидального переменного тока частотой 50 Γ ц при температуре окружающего воздуха (20 ± 5) °C и относительной влажности от 30 до 80 %.
- 1.1.16 Габаритные размеры и масса узлов анализатора соответствуют значениям, приведенным в таблице 1.1.

Таблица 1.1

Исполнение	Основные узлы	Габаритные	Macca,	
анализатора МАРК-1202-	Наименование	Обозначение	размеры, мм, не более	кг, не более
К-ПХС		BP79.01.000		10.5
K-010	Модуль измерительный	BP79.01.000-01	300×140×750	10,5
Н-ХХХ, Щ-ХХХ	, , , , , , , , , , , , , , , , , , ,	BP79.01.000-02		9,5
Н-ПХС		BP79.01.100	220100180	
H-010	Блок	BP79.01.100-01	220×100×180	1,5
Щ-ПХС	преобразовательный (без кабеля)	BP79.01.100-02	150×100×210	
Щ-010		BP79.01.100-03		1,6
Х-П2С		BP79.02.000		6,4
Х-П3С		BP79.02.000-01		6,7
Х-П4С	Панель переключения пробы	BP79.02.000-02	350×100×980	7,0
Х-П5С		BP79.02.000-03		7,3
Х-П6С		BP79.02.000-04		7,6

Продолжение таблииы 1.1

Исполнение	Основные узлы а	Габаритные	Macca,	
анализатора МАРК-1202-	Наименование	Обозначение	размеры, мм, не более	кг, не более
Х-ПХС	Блок сигнализации	BP79.03.000	240×60×170	0,7
	Подставка	BP79.07.000	420×250×260	3,5
Все исполнения	Источник питания ИП-1002 (без кабелей)	BP49.04.000	100×160×160	1,0

1.1.17 Степень оболочкой защиты, обеспечиваемая ПО ГОСТ 14254-2015, соответствует: - модуля измерительного, блока преобразовательного щитового и настенного исполнений, блока сигнализации и источника питания ИП-1002 IP65; – панели переключения пробы IP40. 1.1.18 Анализаторы в транспортной таре выдерживают условия транспортирования по ГОСТ Р 52931-2008: – температура, °C от минус 20 до плюс 50; - синусоидальная вибрация с частотой 5-35 Гц, амплитудой смещения 0,35 мм в направлении, обозначенном на упаковке манипуляционным знаком «Bepx». 1.1.19 Показатели надежности: восстановления работоспособности, – среднее время

1.2 Технические характеристики

- 1.2.1 Диапазон измерений SiO_2 , мкг/дм³ от 0,1 до 5000.
- 1.2.2 Пределы допускаемой основной абсолютной погрешности анализатора при измерении SiO_2 при температуре анализируемой среды (25 \pm 2) °C, окружающего воздуха (20 \pm 5) °C, мкг/дм³:
 - на поддиапазоне от 0 до 500 включ. мкг/дм³ \pm (1 + 0,05C);
- 1.2.3 Пределы допускаемой дополнительной абсолютной погрешности анализатора при измерении SiO_2 , обусловленной изменением температуры анализируемой среды на каждые \pm 10 °C от нормальной (25 \pm 2) °C в пределах диапазона от плюс 5 °C до плюс 50 °C, мкг/дм³ \pm (1 + 0,05C).

- 1.2.4 Пределы допускаемой дополнительной абсолютной погрешности анализатора при измерении SiO_2 , обусловленной изменением температуры окружающего воздуха, на каждые \pm 10 °C от нормальной (20 \pm 5) °C в пределах всего рабочего диапазона от плюс 5 °C до плюс 50 °C, мкг/дм³ \pm (1 + 0,05*C*).
- 1.2.5 Функция преобразования измеренного значения SiO_2 в унифицированный выходной сигнал постоянного тока (далее выходной ток) $I_{\text{вых}}$, мА, при температуре окружающего воздуха (20 ± 5) °C соответствует выражениям:
- для выходного тока в диапазоне от 4 до 20 мА на нагрузке, не превышающей 500 Ом

$$I_{\text{\tiny GBLX}} = 4 + 16 \cdot \frac{C - C_{\text{\tiny Hall}}}{C_{\text{\tiny Outan}}}; \tag{1.1}$$

- для выходного тока в диапазоне от 0 до 5 мА на нагрузке, не превышающей $2\ \kappa O M$

$$I_{\text{\tiny GEAX}} = 5 \cdot \frac{C - C_{\text{\tiny HAY}}}{C_{\text{\tiny Outan}}}; \tag{1.2}$$

 для выходного тока в диапазоне от 0 до 20 мА на нагрузке, не превышающей 500 Ом

$$I_{\text{\tiny GbLX}} = 20 \cdot \frac{C - C_{\text{\tiny HAY}}}{C_{\text{\tiny OMAR}}},\tag{1.3}$$

где $C_{\text{нач}}$ — наименьшее значение запрограммированного диапазона измерений SiO_2 по токовому выходу, мкг/дм³;

 $C_{\partial uan}$ — запрограммированный диапазона измерений SiO_2 по токовому выходу, определяемый как разность между значениями наибольшими и наименьшими значениями программируемого интервала диапазона измерений, мкг/дм 3 .

- 1.2.6 Пределы допускаемой основной приведенной погрешности преобразования измеренного значения SiO_2 в выходной ток анализатора при температуре окружающего воздуха (20 ± 5) °C, % от диапазона по токовому выходу...... ± 0.5 .
- 1.2.8 Диапазон измерений температуры анализируемой среды, °C от 0 до плюс 50.

- 1.2.12 Состояние выхода измеренного значения SiO_2 за нижнюю или/и верхнюю уставку сопровождается:
 - индикацией на экране в строке заголовка символа «⚠» красного цвета;
- миганием индикатора нарушенной уставки « ∇ » или « ∇ » красным цветом;
- появление информации о нарушении в поле для сообщений соответствующего канала;
- замыканием «сухих» контактов реле уставок (если настроена сигнализация для данного события).
- 1.2.13 Состояние выхода измеренного значения температуры за пределы диапазона измерений сопровождается:
 - индикацией на экране в строке заголовка символа «⚠» красного цвета;
 - индикацией значения температуры красным цветом;
- замыканием «сухих» контактов реле (если настроена сигнализация для данного события).
- 1.2.14 Состояние выхода показаний анализатора по SiO_2 за пределы запрограммированного диапазона измерений по токовому выходу сопровождается:
 - индикацией на экране в строке заголовка символа «⚠» красного цвета;
- миганием значения нарушенного предела на шкале токового выхода красным цветом;
 - индикацией значения SiO₂ красным цветом;
- появление информации о нарушении в поле для сообщений соответствующего канала;
- замыканием «сухих» контактов реле (при наличии пользовательской настройки).
- 1.2.15 Анализатор позволяет передавать информацию по интерфейсу RS-485.

1.3 Состав изделия

Состав анализатора приведен в таблице 1.2.

Таблица 1.2

		Исполнение МАРК-1202-				
Наименование	K-010	К-ПХС	H-010	н-пхс	Щ-010	Щ-ПХС
Модуль измерительный	•	•	•	•	•	•
Блок преобразовательный	*	*	•	•	•	•
Панель переключения пробы	0	•	0	•	0	•
Блок сигнализации	0	•	0	•	0	•
Кабель сигнализации	0	•	0	•	0	•
Кабель клапанов	0	•	0	•	0	•
Кабель соединительный К1202.5 (L = 5 м)	0	0	•	•	•	•
Подставка	•	•	•	•	•	•
Источник питания ИП-1002	•	•	•	•	•	•
Комплект монтажных частей	•	•	•	•	•	•
Комплект запасных частей	•	•	•	•	•	•

Примечания

- $1 \ll \bullet \gg -$ входит в состав,
- 2 «о» не входит в состав;
- 3 «*» расположен в корпусе модуля измерительного.

1.4 Устройство и принцип работы

1.4.1 Общие сведения об анализаторе

Анализатор представляет собой стационарный прибор, состоящий из модуля измерительного — если измерение производится в одной пробоотборной линии, или модуля измерительного и панели переключения пробы — если измерение производится в двух и более (до 6 шт.) пробоотборных линиях. Также в зависимости от исполнения в состав анализатора входят блок преобразовательный корпусного, настенного или щитового исполнения, блок сигнализации, подставка и один или два источника питания ИП-1002.

Внешний вид анализатора соответствует рисунку, указанному в таблице 1.3.

Таблица 1.3

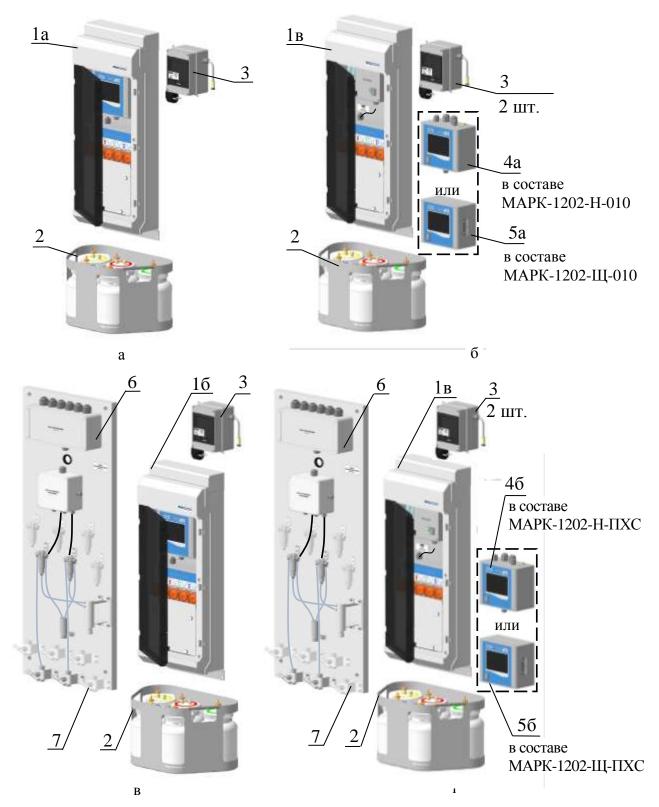
1 dostateja 1.5	
Исполнение анализатора МАРК-1202-	Внешний вид
K-010	Рисунок 1.1а
Н-010; Щ-010	Рисунок 1.1б
К-ПХС	Рисунок 1.1в
Н-ПХС; Щ-ПХС	Рисунок 1.1г

Проба может быть либо отобрана вручную, либо поступать по пробоотборной линии.

Анализатор работает в режимах:

- «ЭКСПРЕСС ИЗМЕРЕНИЕ» разовое измерение пробы, отобранной вручную или поступающей по пробоотборной линии;
- «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» циклическое измерение пробы, поступающей по пробоотборной линии;
- «ПРОМЫВКА» автоматическое очищение гидравлической системы и проточной ячейки пробой, отобранной вручную или поступающей по пробоотборной линии;
- «ГРАДУИРОВКА» градуировка анализатора с помощью растворов с известной концентрацией SiO₂;
 - «НАСТРОЙКИ» установка параметров работы анализатора.

Управление анализатором и передача сигналов к внешним устройствам осуществляется с помощью блока преобразовательного. Блок преобразовательный может быть расположен отдельно от анализатора на расстоянии до 1000 м с возможностью крепления на стену (панель) (МАРК-1202-H-XXX) или в щит (МАРК-1202-Щ-XXX).


Результаты измерения отображаются на экране блока преобразовательного и передаются:

- на токовые выходы в виде унифицированного электрического выходного сигнала постоянного тока от 0 до 5 мA, от 0 до 20 мA либо от 4 до 20 мA (диапазон тока настраивается пользователем);
 - с помощью цифрового интерфейса RS-485 по протоколу ModBus RTU.

Для передачи сигналов к внешним устройствам (кроме интерфейса RS-485) при измерении пробы более чем в одной пробоотборной линии используется блок сигнализации. Блок сигнализации может быть удален от блока преобразовательного на расстояние не более 2 м.

Данные измерений и градуировок хранятся во встроенной памяти анализатора.

В комплект поставки входит подставка с четырьмя емкостями для реактивов и емкостью для градуировочного раствора.

1a- модуль измерительный BP79.01.000-01; 16- модуль измерительный BP79.01.000; 1b- модуль измерительный BP79.01.000-02; 2- подставка BP79.07.000; 3- источник питания ИП-1002 BP49.04.000; 4a- блок преобразовательный BP79.01.100-01; 46- блок преобразовательный BP79.01.100; 5a- блок преобразовательный BP79.01.100-03; 56- блок преобразовательный BP79.01.100-02; 6- блок сигнализации BP79.03.000; 7- панель переключения пробы BP79.02.000, BP79.02.000-01...04

Рисунок 1.1 – Внешний вид анализатора

В анализаторе предусмотрена возможность комбинировать замыкание «сухих» контактов реле с событиями сигнализации, приведенными в таблице 1.4, а также настраивать уставки срабатывания сигнализации.

Таблица 1.4

Применяемость	Событие сигнализации	Настройка уставки
	Закончились реактивы	«НАСТРОЙКИ»/ «РЕАКТИВЫ»
Общая	Закончился градуировочный раствор	«НАСТРОЙКИ»/ «ГРАДУИРО- ВОЧНЫЙ РАСТВОР»
для анализатора	Требуется обслуживание	_
	Ошибка анализатора	_
	Выход SiO ₂ за верхнюю уставку	«НАСТРОЙКИ»/«РЕЛЕ»/ «УСТАВКА ВЕРХНЯЯ»
	Выход SiO ₂ за нижнюю уставку	«НАСТРОЙКИ»/«РЕЛЕ»/ «УСТАВКА НИЖНЯЯ»
Индивидуально для канала пробы	Выход SiO ₂ за пределы уставок	«НАСТРОЙКИ»/«РЕЛЕ»/ «УСТАВКА НИЖНЯЯ, УСТАВКА ВЕРХНЯЯ»
	Выход значения температуры за пределы измеряемого диапазона	_
	Выход SiO ₂ за диапазон токового выхода	«НАСТРОЙКИ»/«ТОКОВЫЙ ВЫХОД/ ДИАПАЗОН SiO ₂ »

1.4.2 Принцип работы анализатора

Принцип действия анализатора основан на фотометрическом методе, который заключается в определении оптической плотности синего кремнемолибденового комплекса.

Синий кремнемолибденовый комплекс образуется в результате дозирования реактивов в пробу анализируемой среды в заданной последовательности с помощью перистальтических насосов. Оптическая плотность полученного раствора пропорциональна концентрации SiO_2 в исходной пробе анализируемой среды.

1.4.3 Методика выполнения измерений

1.4.3.1 Гидравлическая схема измерения – в соответствии с рисунком 1.2 и с таблицей 1.5.

Таблица 1.5

Условное обозначение	Наименование
1	Панель переключения пробы (для исполнений МАРК-1202-Х-ПХС)
2	Клапан панели переключения пробы (от 2 до 6 шт.)
3	Клапан игольчатый (от 2 до 6 шт.)
4	Клапан модуля измерительного
5	Корпус ВР79.01.412 с фильтрующим материалом (синтепон)
6	Датчик давления
7	Датчик температуры ВР52.02.300
8	Модуль измерительный
9	Насосы ВР79.01.350 (4 шт.) (далее – насосы АD) и насос перистальтический KAS-SEB083 (далее – насос ГРАДУИРО-ВОЧНЫЙ РАСТВОР)
10	Ячейка проточная ВР79.01.200
A	Реактив А
В	Реактив В
C	Реактив С
D	Реактив D
1	Подача
—	Слив

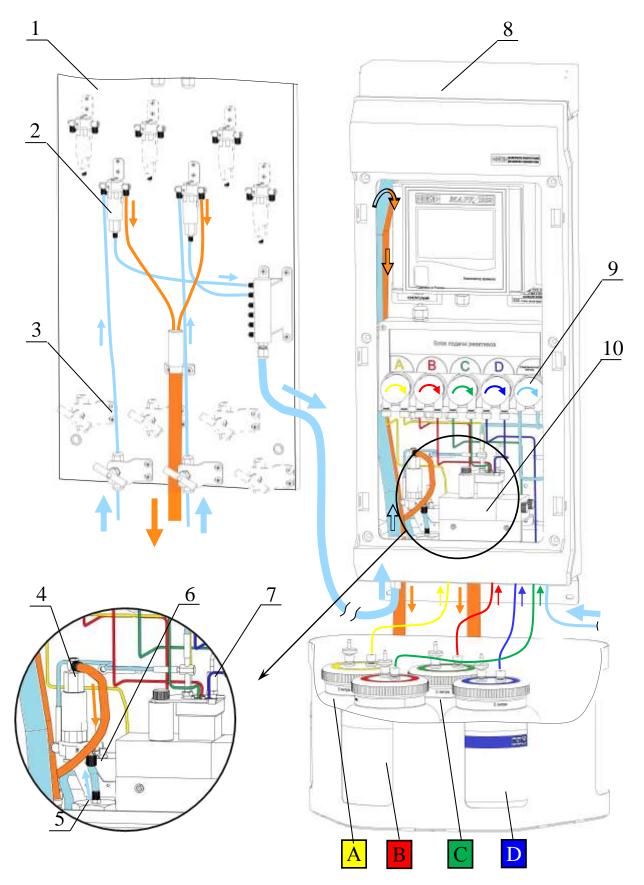
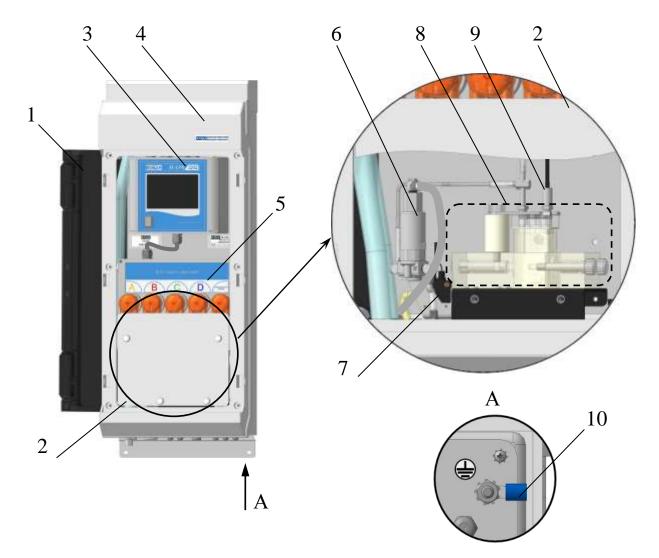


Рисунок 1.2 – Гидравлическая схема

- 1.4.3.2 В режиме «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» и «ЭКСПРЕСС ИЗМЕРЕНИЕ» для пробы, поступающей по пробоотборной линии, измерение производится в следующем порядке:
- 1) анализаторы MAPK-1202-X-010 анализируемая среда подается на модуль измерительный [8]; анализаторы MAPK-1202-X-ПХС анализируемая среда подается на панель переключения пробы, клапан [2] измеряемого канала пробы переключается в положение подачи анализируемой среды на модуль измерительный [8];
- 2) анализируемая среда проходит через фильтр [5] на клапан [4], при этом контролируется наличие пробы в гидравлической системе модуля измерительного [8] с помощью датчика давления [6], далее клапан [4] осуществляет слив анализируемой среды;
- 3) клапан [4] переключается на подачу анализируемой среды в ячейку проточную [10];
 - 4) производится промывка ячейки проточной [10] в течение 2 мин;
- 5) клапан [4] переключается на слив анализируемой среды и для анализатора исполнений MAPK-1202-X-ПХС клапан [2] измеряемого канала переключается на слив;
 - 6) датчик температуры [7] измеряет температуру анализируемой среды;
 - 7) измерительная система стабилизируется в течение 5 с;
 - 8) измеряется оптическая плотность пробы без добавления реактивов;
- 9) насосы А и В [9] дозируют соответствующие реактивы в ячейку проточную [10];
 - 10) в течение 3 мин происходит химическая реакция;
 - 11) насос С [9] дозирует реактив С в ячейку проточную [10];
 - 12) в течение 1,5 мин происходит химическая реакция;
 - 13) насос D [9] дозирует реактив D в ячейку проточную [10];
- 14) в течение 2 мин происходит химическая реакция, в результате которой образуется синий кремнемолибденовый комплекс;
 - 15) измеряется оптическая плотность раствора;
- 16) измеренная оптическая плотность раствора преобразуется в значение массовой концентрации SiO_2 , которое выводится на экран блока преобразовательного;
- 17) для анализатора исполнений MAPK-1202-X-ПХС в режиме «АВ-ТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» клапан [2] следующего канала за 2 мин до окончания текущего измерения переключается в положение подачи анализируемой среды на модуль измерительный;
 - 18) цикл повторяется.

Для анализаторов исполнений MAPK-1202-X-ПХС – производится аналогичный цикл измерения для следующего канала пробы.

- 1.4.3.3 В режиме «ЭКСПРЕСС ИЗМЕРЕНИЕ» пробы, отобранной вручную, измерение в канале «К0» производится в следующем порядке:
 - 1) клапан [4] закрыт;
- 2) насос ГРАДУИРОВОЧНЫЙ РАСТВОР [9] дозирует пробу в ячейку проточную [10] в течение 2 мин;
- 3) проводится измерение в соответствии с пп. 6-16 режима «АВТОМА-ТИЧЕСКОЕ ИЗМЕРЕНИЕ».


1.4.4 Составные части анализатора

1.4.4.1 Модуль измерительный

Модуль измерительный состоит из гидравлической и измерительной систем, заключенных в единый корпус.

Общий вид модуля измерительного в зависимости от исполнения анализатора показан:

- на рисунке 1.3 исполнения BP79.01.000 и BP79.01.000-01;
- на рисунке 1.4 исполнение BP79.01.000-02.

1 — крышка BP52.00.003; 2 — пластина BP79.01.030; 3 — блок преобразовательный BP79.01.100 или BP79.01.100-01; 4 — корпус BP79.01.002; 5 — блок подачи реактивов BP79.01.300; 6 — клапан BP79.01.430; 7 — датчик давления PSF 102 7651-711; 8 — ячейка проточная BP79.01.200; 9 — датчик температуры BP52.02.300; 10 — клемма заземления (НКИ 2,5 — 6)

Рисунок 1.3 – Модуль измерительный ВР79.01.000 (ВР79.01.000-01)

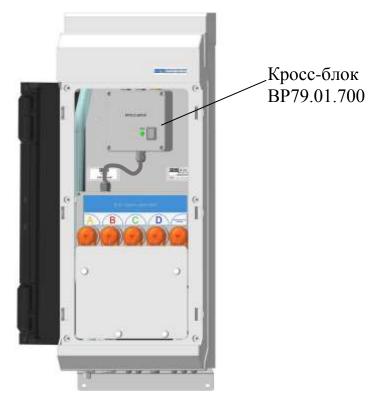


Рисунок 1.4 – Модуль измерительный ВР79.01.000-02 (остальное см. рисунок 1.3)

Обозначения модуля измерительного в зависимости от состава анализатора приведены в таблице 1.6.

Таблица 1.6

Исполнение	Обозначение	Состав анализатора		
анализатора	модуля	блок	панель	
MAPK-1202-	измерительного	преобразовательный	переключения пробы	
К-ПХС	BP79.01.000	установлен в корпус	имеется	
		модуля измерительного	инчестея	
K-010	BP79.01.000-01	установлен в корпус	отсутствует	
		модуля измерительного	01071012701	
Н-ХХХ; Щ-ХХХ	BP79.01.000-02	установлен на стену (панель) или в щит	отсутствует	

Назначение основных составных частей модуля измерительного в соответствии с таблицей 1.7.

Таблица 1.7

Наименование	Назначение
Блок преобразовательный	В соответствии с п. 1.4.4.2
Блок подачи реактивов	 управление фотометром, насосами, электромагнитным клапаном модуля измерительного, датчиками давления и температуры; преобразование измеренного значения фототока в значение SiO₂

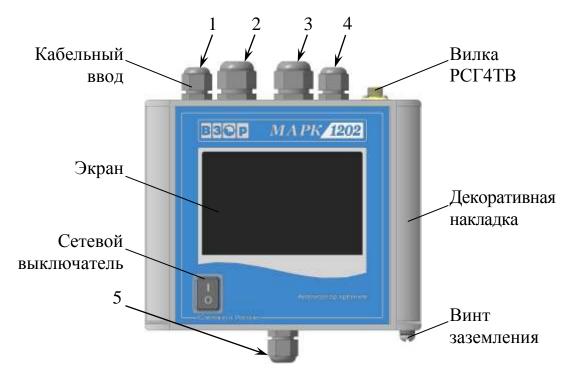
Продолжение таблицы 1.7

Наименование	Назначение
Ячейка проточная	 место проведения химической реакции
Датчик давления	 контроль наличия пробы в переливном устройстве
Датчик температуры	– измерение температуры
Клапан	 переключение потока пробы на слив или подачу в ячейку проточную
Кросс-блок	– питание блока подачи реактивов и блока управления клапанами;
(в составе исполнения	- связь модуля измерительного с панелью переключения про-
модуля измерительного	бы и блоком преобразовательным, установленным на стену
BP79.01.000-02)	или в щит

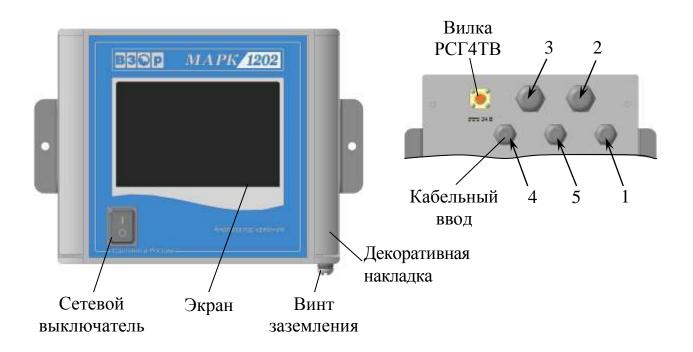
1.4.4.2 Блок преобразовательный

Блок преобразовательный осуществляет:

- настройку режимов работы анализатора;
- формирование сигнала на токовых выходах;
- управление состоянием «сухих» контактов реле;
- обмен с внешним устройством по интерфейсу RS-485;
- отображение результатов измерений на экране цветного сенсорного графического жидкокристаллического индикатора (далее экран) с разрешающей способностью в соответствии с таблицей 1.8.


Таблица 1.8

Индицируемый	Единица	Участок диапазона	Разрешающая
параметр	измерений	индикации	способность
C:O.	NGGP/77.63	от 0,0 до 99,9	0,1
SiO ₂	мкг/дм ³	от 100 до 5000	1
Температура	°C	_	0,1


Внешний вид блока преобразовательного определяется способом установки и соответствует рисунку, указанному в таблице 1.9.

Таблииа 1.9

Исполнение блока преобразовательного	Исполнение анализатора МАРК-1202-	Способ установки	Внешний вид	
BP79.01.100,	K-XXX	В корпус модуля измерительного	- Рисунок 1.5а	
BP79.01.100-01	H-XXX	На стену		
BP79.01.100-02, BP79.01.100-03	щ-ххх	В щит	Рисунок 1.5б	

а – исполнение ВР79.01.100 (ВР79.01.100-01)

б – исполнение BP79.01.100-02 (BP79.01.100-03) Рисунок 1.5 – Блок преобразовательный

Назначение кабельных вводов – в соответствии с таблицей 1.10.

Таблица 1.10

Кабельный ввод (рисунок 1.5)	Исполнение анализатора МАРК-1202-	Разъем блока преобразовательного	Подключаемое устройство
1	X-010	X9	Устройство с интерфейсом RS-485
	К-ПХС	X12, X15	Блок управления клапанами
2	X-XXX	X5	Внешние регистрирующие устройства с
3	X-010	X6	токовым входом и внешние исполнительные и сигнализирующие устройства
	Х-ПХС	X9	Устройство с интерфейсом RS-485
4	Х-ПХС	X13, X16	Блок сигнализации
5	K-XXX	X11, X14	Блок подачи реактивов
	Н-ХХХ, Щ-ХХХ	X15	Кросс-блок

1.4.4.3 Панель переключения пробы (исполнения анализатора MAPK-1202-X-ПХС)

Панель переключения пробы предназначена для подключения пробоотборных линий (от 2 до 6 шт.) и обеспечивает подачу пробы в модуль измерительный.

Внешний вид панели переключения пробы показан на рисунке 1.6.

Назначение основных составных частей панели переключения пробы в соответствии с таблицей 1.11.

Таблица 1.11

Наименование	Назначение		
Блок управления клапанами	Управление электромагнитными клапанами панели переключения пробы		
Клапан (от 2 до 6 шт.)	Переключение потока пробы на слив или подачу в коллектор		
Коллектор	Подача пробы от пробоотборных линий к гидравлической системе модуля измерительного		
Клапан игольчатый (от 2 до 6 шт.)	Регулирование потока пробы		

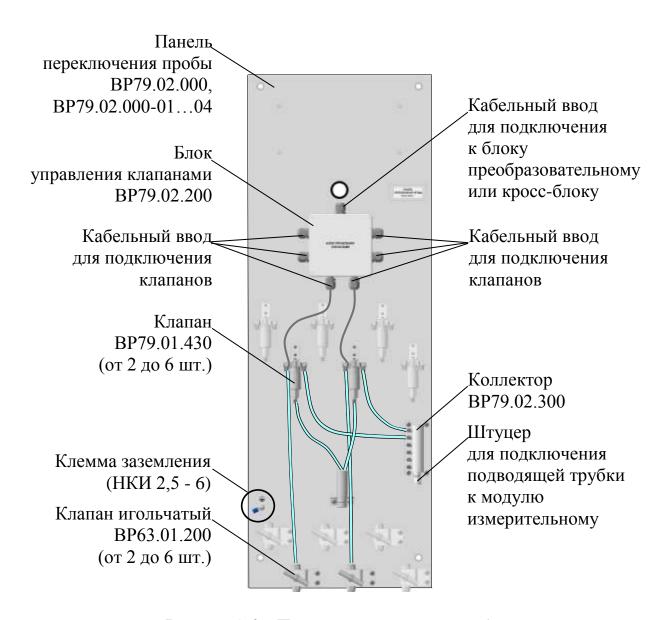


Рисунок 1.6 – Панель переключения пробы BP79.02.000, BP79.02.000-01...04

1.4.4.4 Блок сигнализации (анализатор исполнений МАРК-1202-Х-ПХС)

Блок сигнализации предназначен для формирования сигнала на токовых выходах с выходными унифицированными сигналами постоянного тока от 0 до 5 мA, от 0 до 20 мA либо от 4 до 20 мA и передачи его к внешним регистрирующим устройствам с токовым входом и исполнительным и сигнализирующим устройствам.

Внешний вид блока сигнализации показан на рисунке 1.7, назначение кабельных вводов – в соответствии с таблицей 1.12.

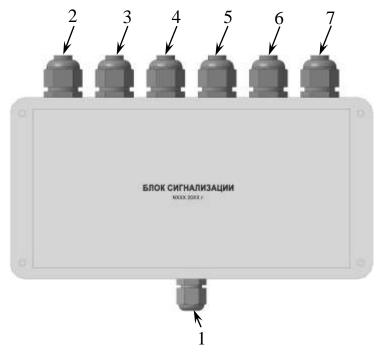
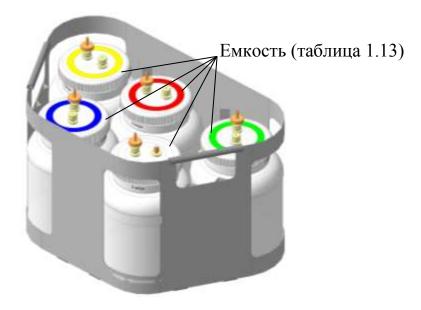
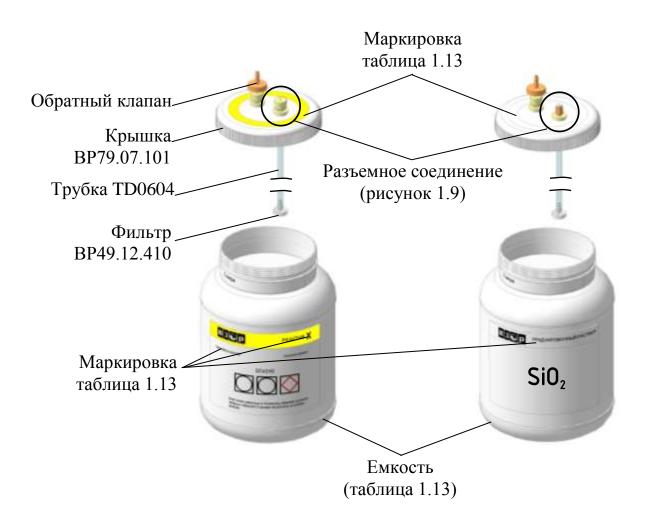


Рисунок 1.7 – Блок сигнализации ВР79.03.000


Таблица 1.12

Кабельный ввод (рисунок 1.7)	Разъем блока сигнализации	Подключаемое устройство
1	X2, X3	Блок преобразовательный
2	X4	
3	X5	
4	X6	Внешние регистрирующие устройства с токовым входом и
5	X7	внешние исполнительные и сигнализиру- ющие устройства
6	X8	Тощие устронетва
7	X9	


1.4.4.5 Подставка и емкости

ВНИМАНИЕ: СОБЛЮДАТЬ правила техники безопасности по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75 при работе с реактивами!

Внешний вид подставки и емкостей показан на рисунке 1.8.

a – *подставка ВР79.07.000*

6 – емкость BP79.07.100, BP79.07.100-01...04

Рисунок 1.8 – Подставка ВР79.07.000

Конструкция подставки предусматривает установку на горизонтальную и вертикальную поверхности.

Крышки емкостей оснащены обратными клапанами для впуска воздуха и разъемными соединениями в соответствии с рисунком 1.9 для установки трубок для подачи реактивов и градуировочного раствора в блок подачи реактивов.

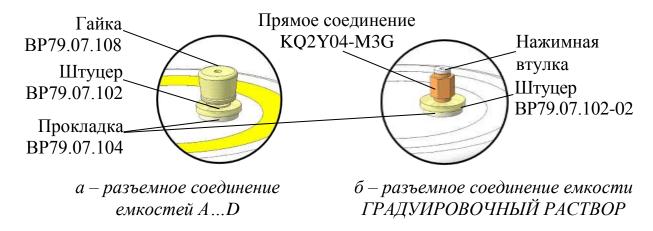


Рисунок 1.9 – Разъемные соединения для установки трубок для подачи реактивов и градуировочного раствора

Маркировка емкостей и трубок для подачи реактивов и градуировочного раствора соответствует маркировке блока подачи реактивов и приведена в таблице 1.13.

Таблица 1.13

1 иолици 1.13			
Обозначение емкости	Условное обозначение в тексте	Маркировка емкости и трубки подачи	Наименование жидкости
BP79.07.100	Емкость А	РЕАКТИВ А желтый	Аммоний молибденовокислый 4-водный; гидроксид натрия
BP79.07.100-01	Емкость В	РЕАКТИВ В красный	Серная кислота
BP79.07.100-02	Емкость С	РЕАКТИВ С зеленый	Щавелевая кислота 2-водная
BP79.07.100-03	Емкость D	РЕАКТИВ D синий	Аммоний-железо (II) серно- кислый; серная кислота
BP79.07.100-04	Емкость ГРАДУИРОВОЧНЫЙ РАСТВОР		Градуировочный раствор или анализируемая среда

1.4.4.6 Источник питания ИП-1002

Источник питания ИП-1002 с входным напряжением \sim 220 В, 50 Гц и выходным напряжением =24 В предназначен для питания анализатора и блока преобразовательного.

Общий вид источника питания ИП-1002 представлен на рисунке 1.10.

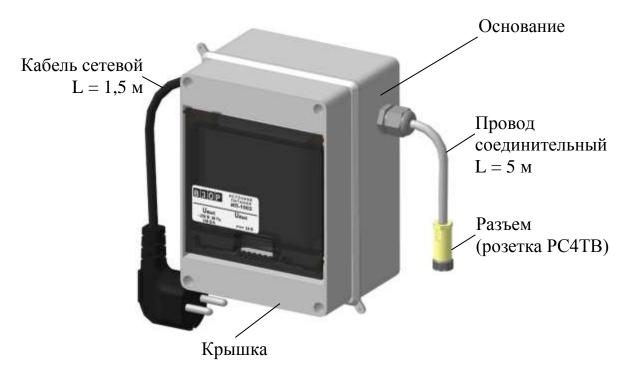


Рисунок 1.10 – Источник питания ИП-1002 ВР49.04.000

Кабель сетевой: 1,5; – длина кабеля, м 1,5; – количество жил и номинальное сечение, мм² 3×0,75; – предельный ток, А 10; – номинальное напряжение переменного тока, В 220. Провод соединительный: 5; – количество жил и номинальное сечение, мм² 2×0,75.

1.5 Средства измерения, инструмент и принадлежности

Для эксплуатации и проведения работ по техническому обслуживанию анализатора дополнительно могут потребоваться средства измерений, инструмент и принадлежности, представленные в таблице 1.14, не входящие в комплект поставки анализатора.

Таблица 1.14

1 donuga 1.11	1		
Наименование средства	Технические характеристики	Коли- чество, шт.	Назначение
Весы лабораторные электронные B1502	Класс точности II по ГОСТ Р 53228-2008; погрешность взвешивания не более ± 60 мг.	1	Приложение Б. Приготовление градуировочного раствора Приложение В.
Вода очищенная	OCT 34-70-953.2-88	_	Приготовление реактивов
Мешалка магнитная	_	1	Приложение Б.
Колба мерная полипропиленовая или полиэтиленовая	Вместимость 1000 см ³	1	Приготовление градуировочного раствора
Мензурка 100	ГОСТ 1770-74; вместимость 100 см ³	1	Приложение В. Приготовление реактивов
Емкость полипропиленовая или полиэтиленовая	Вместимость 1000 см ³	2	п. 2.4.1 Проведение ручной градуировки
Дозатор пипеточный одноканальный полиэтиленовый	Вместимость 5 и 10 см^3 ; погрешность $\pm 0,1 \text{ см}^3$	1	Приложение Б. Приготовление градуировочного раствора
ГСО 9729-2010 состава раствора ионов кремния	Интервал допускаемых аттестованных значений массовой концентрации ионов кремния от 0,95 до 1,05 г/дм ³ включ.; относительная погрешность аттестованного значения не более 1 %	_	
Аммоний молибденовокислый 4-водный	ГОСТ 3765-78, х.ч.	_	Приложение В. Приготовление реактивов
Серная кислота	ГОСТ 14262-78, ос.ч.	_	
Щавелевая кислота 2-водная	ГОСТ 22180-76, х.ч.	_	
Гидрооксид натрия	ГОСТ 4328-77, х.ч.	_	
Аммоний-железо (II) сернокислый	ГОСТ 4208-72, х.ч.	_	

<u>Примечание</u> – Допускается применение других средств измерения с аналогичными метрологическими характеристиками.

1.6 Маркировка

- 1.6.1 Маркировка, наносимая на составные части анализатора, соответствует ГОСТ 26828-86.
- 1.6.2 На крышке модуля измерительного укреплена табличка, на которой нанесен товарный знак предприятия-изготовителя.

- 1.6.3 На панели модуля измерительного укреплена табличка, на которой нанесено наименование сборочной единицы, и табличка, на которой нанесены:
 - товарный знак предприятия-изготовителя;
 - наименование и условное обозначение анализатора;
 - знак утверждения типа;
- единый знак обращения продукции на рынке Евразийского экономического союза;
 - заводской номер и год выпуска;
 - обозначение ТУ.
- 1.6.4 На верхней панели модуля измерительного рядом с разъемом цепи питания нанесено условное обозначение рода электрического тока и напряжение « 24 В».
- 1.6.5 На нижней панели модуля измерительного рядом с винтом заземления нанесено условное обозначение защитного заземления « »».
- 1.6.6 На передней панели блока подачи реактивов укреплена табличка, на которой нанесены:
 - наименование сборочной единицы;
 - наименования гидравлических линий.
- 1.6.7 На кабелях клапана, датчика давления, светодиода, мешалки фотодиода и датчика температуры нанесена маркировка, указывающая на их функциональное назначение.
 - 1.6.8 На корпусе кросс-блока нанесены:
 - наименование сборочной единицы;
 - наименование индикатора работы СЕТЬ;
- рядом с разъемом цепи питания условное обозначение рода электрического тока и напряжение «**...**24 В»;
- рядом с винтом заземления условное обозначение защитного заземления « $\stackrel{\square}{=}$ ».
 - 1.6.9 На корпусе блока преобразовательного нанесены:
 - наименование анализатора и товарный знак предприятия-изготовителя;
 - наименование страны-изготовителя;
- под декоративной накладкой условное обозначение блока преобразовательного, заводской номер и год выпуска;
- рядом с разъемом цепи питания условное обозначение рода электрического тока «т24 В»;
- рядом с винтом заземления условное обозначение защитного заземления « \clubsuit ».
 - 1.6.10 На панель переключения пробы прикреплена табличка, содержащая:
 - наименование сборочной единицы;
 - заводской номер и год выпуска.

- 1.6.11 На корпусе блока управления клапанами нанесено наименование сборочной единицы.
 - 1.6.12 На корпусе блока сигнализации нанесены:
 - наименование сборочной единицы;
 - заводской номер и год выпуска.
- 1.6.13 На кронштейны клапанов и клапанов игольчатых нанесены номера канала пробы.
- 1.6.14 На каждой емкости под реактив прикреплена табличка, на которую нанесены:
 - товарный знак предприятия-изготовителя емкости;
- наименование, химическая формула и цветовое обозначение реактива в соответствии с таблицей 1.14;
 - предписывающие знаки M01 и M06 по ГОСТ 12.4.026-2015;
- предупредительный знак «Жидкости, выливающиеся из двух пробирок и поражающие металл и руку» по ГОСТ 31340-2013.
- 1.6.15 На емкости для градуировочного раствора прикреплена табличка, на которую нанесены товарный знак-предприятия изготовителя, наименование, химическая формула и цветовое обозначение градуировочного раствора в соответствии с таблицей 1.14.
- 1.6.16 Трубки, подводящие реактивы и градуировочный раствор от емкостей к анализатору, имеют маркировку цветом в соответствии с таблицей 1.14.
- 1.6.17 На корпусе источника питания ИП-1002 укреплена табличка, на которой нанесены:
 - товарный знак и наименование предприятия-изготовителя;
 - заводской номер и год выпуска;
- условное обозначение рода электрического тока и напряжение на входе и выходе источника питания;
 - потребляемая мощность источника питания.
- 1.6.18 На кабеле соединительном нанесена маркировка, указывающая на его функциональное назначение и длину.
- 1.6.19 На кабеле сигнализации и на кабеле клапанов нанесена маркировка, указывающая их функциональное назначение.
 - 1.6.20 Транспортная маркировка соответствует ГОСТ 14192-96.
- 1.6.21 На транспортной таре наклеена этикетка, содержащая сведения об изделии, такие как условное обозначение анализатора с указанием варианта исполнения, дата упаковки, товарный знак, контакты и наименование предприятия-изготовителя.
- 1.6.22 На транспортной таре закреплен ярлык маркировочный с данными получателя и вариантом исполнения анализатора.
- 1.6.23 На транспортной таре нанесены манипуляционные знаки: «Хрупкое. Осторожно», «Беречь от влаги», «Верх» и «Пределы температуры» по ГОСТ 14192-96.

1.7 Упаковка

- 1.7.1 Упаковка обеспечивает сохраняемость анализатора при транспортировании и хранении.
- 1.7.2 По защите анализатора от климатических факторов внешней среды упаковка имеет категорию КУ-1 по ГОСТ 23170-78.
- 1.7.3 Упаковка соответствует требованиям ГОСТ 9.014-78 для группы изделий III-1:
 - вариант временной противокоррозионной защиты ВЗ-0;
 - вариант внутренней упаковки ВУ-4.
- 1.7.4 Составные части анализатора укладываются в фанерный ящик с деревянным каркасом, выполненный в соответствии с ГОСТ 5959-80.
 - 1.7.5 В отдельные полиэтиленовые пакеты укладываются:
 - модуль измерительный;
 - панель переключения пробы;
 - блок преобразовательный;
 - блок сигнализации;
 - подставка;
 - источник питания ИП-1002;
 - кабель соединительный К1202.5;
 - кабель сигнализации;
 - комплект монтажных частей;
 - комплект запасных частей;
- руководство по эксплуатации, паспорт и товаросопроводительный документ (упаковочная ведомость);
 - изделия, поставляемые по согласованию с заказчиком.
- 1.7.6 Свободное пространство в фанерном ящике заполнено амортизационным материалом.
- 1.7.7 Крепление анализатора и составных частей внутри фанерного ящика выполнено в соответствии с конструкторской документацией.
- 1.7.8 Срок сохраняемости до переупаковывания равен сроку службы анализатора.
- 1.7.9 Переупаковывание анализатора проводится в случае обнаружения дефектов упаковки при осмотрах в процессе хранения или по истечении срока сохраняемости до переупаковывания.
- $1.7.10\ \Pi$ о согласованию с заказчиком допускается применять другие виды упаковки.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 Анализатор следует размещать в условиях, соответствующих п. 1.1.10.
- 2.1.2 Анализатор следует оберегать от ударов, так как в его конструкции использованы хрупкие материалы.
- 2.1.3 После пребывания анализатора на холодном воздухе необходимо выдержать его при комнатной температуре не менее 8 ч, после чего можно приступить к подготовке анализатора к работе.

2.2 Меры безопасности

- 2.2.1 К работе с анализатором допускается персонал, изучивший настоящее руководство по эксплуатации и правила работы с химическими реактивами.
- 2.2.2 Во время работы должны соблюдаться требования техники безопасности:
- при работе с электроустановками правила эксплуатации электроустановок, действующие на предприятии;
- при работе с химическими реактивами по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75.
- 2.2.3 Класс по способу защиты человека от поражения электрическим током I по ГОСТ 12.2.007.0-75.
- $2.2.4~\Pi$ о электромагнитной совместимости анализатор соответствует требованиям ТР ТС 020/2011 «Электромагнитная совместимость технических средств» (ГОСТ Р 51522.1-2011, ГОСТ Р МЭК 61326-1-2014 для оборудования класса А).
- $2.2.5~\Pi$ о безопасности анализатор соответствует требованиям TP TC 004/2011 «О безопасности низковольтного оборудования» (ГОСТ IEC 61010-1-2014).

2.3 Подготовка анализатора к использованию

2.3.1 Получение анализатора

При получении анализатора следует вскрыть упаковку, проверить комплектность и убедиться в сохранности упакованных изделий.

2.3.2 Установка модуля измерительного

Перед установкой модуля измерительного снять верхнюю крышку в соответствии с рисунком 2.1 в следующем порядке:

- установить шлицевую отвертку в паз верхней крышки;
- отвести шлицевую отвертку под углом 15-30° к поверхности основания модуля измерительного до выхода верхней крышки из паза;
- осуществить аналогичную операцию с противоположной стороны модуля измерительного.

ВНИМАНИЕ: НЕ ПРИКЛАДЫВАТЬ чрезмерного усилия при демонтаже верхней крышки!

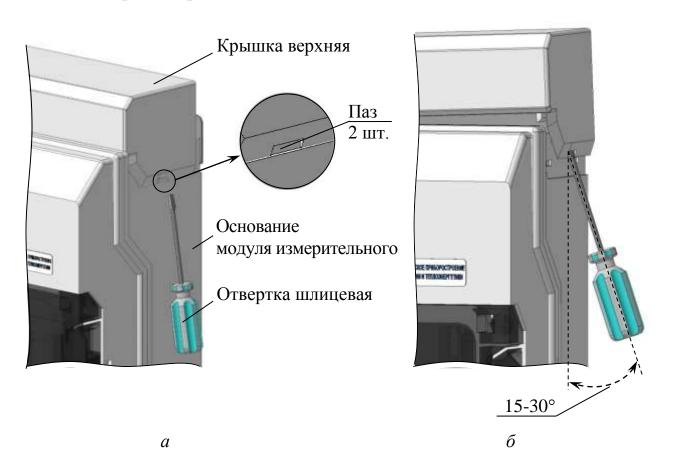


Рисунок 2.1 – Демонтаж верхней крышки модуля измерительного

Установить модуль измерительный на вертикальную поверхность вблизи пробоотборной точки. Расположение отверстий на кронштейнах для крепления модуля измерительного в соответствии с рисунком 2.2.

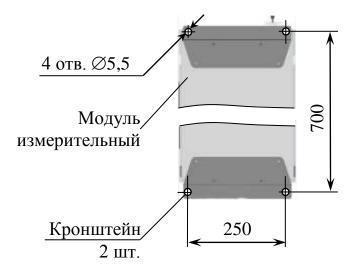


Рисунок 2.2 – Расположение отверстий для крепления модуля измерительного

<u>Примечание</u> — Для установки модуля измерительного на металлический лист толщиной не более 8 мм можно воспользоваться винтами $M5 \times 18$, гайками M5 и шайбами, входящими в комплект монтажных частей BP79.12.000.

2.3.3 Установка источника питания ИП-1002

Установить источник питания ИП-1002 в месте, не затрудняющем отключение его от сети питания ~220 B, 50 Γ ц.

Перед установкой источника питания ИП-1002 на вертикальную поверхность необходимо снять крышку (рисунок 1.10), освободив доступ к отверстиям для крепления, расположенным на основании.

Расположение и размер отверстий для крепления источника питания ИП-1002 — в соответствии с рисунком 2.3.

После установки источника питания ИП-1002 крышку установить на основание.

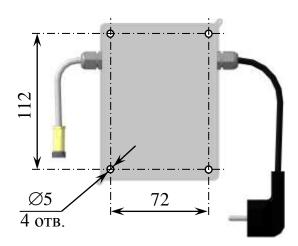


Рисунок 2.3 — Расположение и размер отверстий для крепления источника питания ИП-1002

2.3.4 Установка блока преобразовательного

2.3.4.1 Анализатор исполнений МАРК-1202-Н-ХХХ

Разместить блок преобразовательный BP79.01.100 либо BP79.01.100-01 (далее — блок преобразовательный) относительно модуля измерительного на расстоянии, не превышающем длину используемого соединительного кабеля.

Перед установкой блока преобразовательного на вертикальную поверхность необходимо снять декоративные накладки в соответствии с рисунком 2.4, освободив доступ к отверстиям для крепления. После установки блока преобразовательного вернуть декоративные накладки в исходное положение.

Расположение и размер отверстий для крепления блока преобразовательного на вертикальной поверхности – в соответствии с рисунком 2.4.

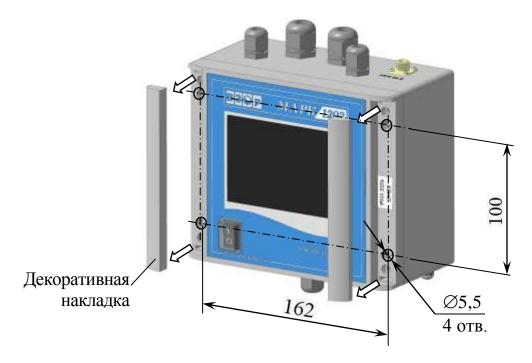
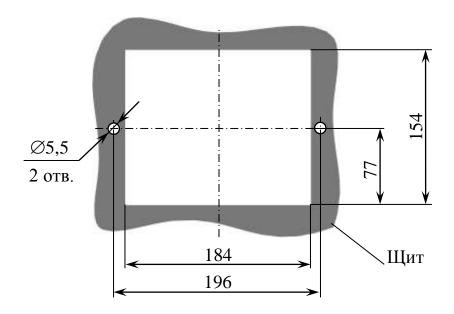



Рисунок 2.4 — Расположение и размер отверстий для крепления блока преобразовательного BP79.01.100 (BP79.01.100-01)

2.3.4.2 Анализатор исполнений МАРК-1202-Щ-ХХХ

Разместить блок преобразовательный BP79.01.100-02 либо BP79.01.100-03 (далее – блок преобразовательный) на расстоянии, не превышающем длину используемого соединительного кабеля.

Расположение и размер отверстий для крепления блока преобразовательного в щите — в соответствии с рисунком 2.5.

Pисунок 2.5 - Pазметка в щите для крепления блока преобразовательного

Установить блок преобразовательный с внутренней стороны щита. Установить накладку ВР79.01.181, входящую в комплект монтажных частей ВР79.01.180 анализатора МАРК-1202-Щ-ХХХ, с лицевой стороны щита в соответствии с рисунком 2.6.

<u>Примечание</u> — Для установки блока преобразовательного в щит толщиной не более 3 мм можно воспользоваться винтами $M5\times8$ с гайками, входящими в комплект монтажных частей BP79.01.180.

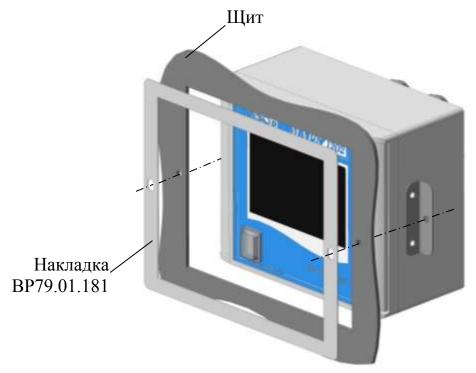


Рисунок 2.6 — Установка блока преобразовательного BP79.01.000-02 либо BP79.01.000-03 в щит

2.3.5 Установка панели переключения пробы (анализатор исполнений МАРК-1202-X-ПХС)

Разместить панель переключения пробы в вертикальном положении на расстоянии не более 1,5 м от модуля измерительного.

Расположение и размер отверстий для крепления – в соответствии с рисунком 2.7.

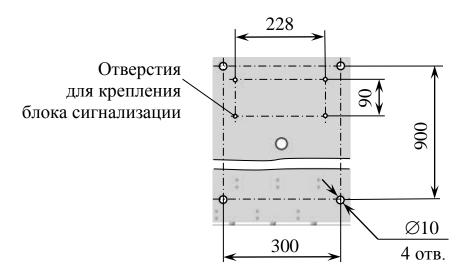


Рисунок 2.7 — Расположение и размер отверстий для крепления панели переключения пробы BP79.02.000, BP79.02.000-01...04

<u>Примечание</u> — Для установки панели переключения пробы на металлический лист толщиной не более 8 мм можно воспользоваться винтами $M8 \times 55$, гайками M8 и шайбами 8", входящими в комплект монтажных частей BP79.02.500.

2.3.6 Установка блока сигнализации (исполнения анализатора MAPK-1202-X-ПХС)

Блок сигнализации может быть установлен на вертикальную поверхность на расстоянии не более 2 м от блока преобразовательного или на панель переключения пробы.

Расположение и размер отверстий для крепления – в соответствии с рисунком 2.8.

Для доступа к отверстиям для крепления, необходимо снять крышку блока сигнализации. После установки блока сигнализации вернуть крышку в исходное положение.

<u>Примечание</u> — Для установки блока сигнализации можно воспользоваться винтами $M4\times8$, входящими в комплект монтажных частей BP79.02.500.

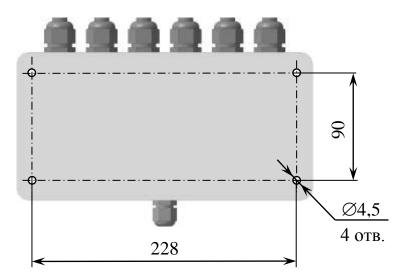


Рисунок 2.8 — Расположение и размер отверстий для крепления блока сигнализации BP79.03.000

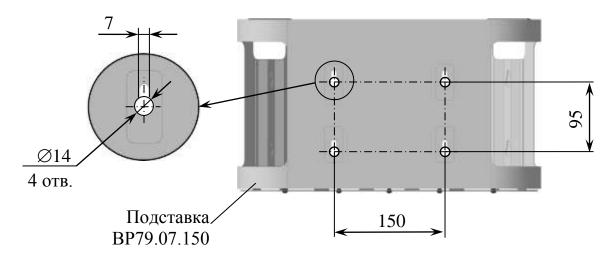
2.3.7 Установка подставки

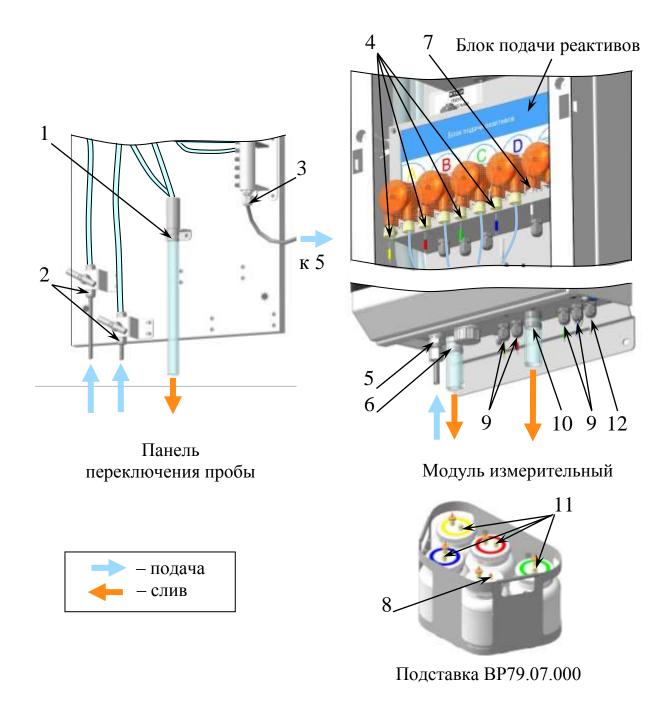
Подставку установить на горизонтальную или вертикальную поверхность на расстоянии не более 1,5 м от модуля измерительного, не препятствующем подаче реактивов и градуировочного раствора.

Для установки на вертикальную поверхность подставку навесить на крепежные изделия диаметром 6 мм.

<u>Примечание</u> – Крепежные изделия для установки подставки на вертикальную поверхность в комплект поставки не входят.

Расположение и размер отверстий для установки подставки на вертикальную поверхность – в соответствии с рисунком 2.9.




Рисунок 2.9 — Расположение и размер отверстий для крепления подставки BP79.07.150 на вертикальную поверхность

2.3.8 Гидравлические соединения анализатора

Гидравлические подсоединения анализатора — в соответствии с таблицей $2.1\,\mathrm{u}$ рисунком 2.10.

Таблица 2.1

Исполнение	Мо позиции	Наименование трубки	Назначение	No
анализатора		паименование трубки	Пазначение	ПП.
MAPK-1202-	по рис. 2.10			1111.
X-010	5		Подача пробы в гидравличе-	2201
A-010	3		скую систему модуля изме-	2.3.6.1
			рительного от пробоотбор-	
		Трубка TU0604C	ной линии	
Х-ПХС	2	$\emptyset_{\text{наруж.}}6\times1$ со вставкой		
A-IIAC	2	трубной ВР63.02.002	Подача пробы в гидравличе-	
		или	скую систему панели пере-	
		труба AISI 316L $\varnothing_{\text{наруж.}}$ 6×1	ключения пробы от пробоот-	
	2 5	(далее – трубка для подачи	борной линии	
	$3 \rightarrow 5$	пробы)	Подача пробы в гидравличе-	
		• /	скую систему модуля изме-	
			рительного от панели пере-	
37 373737			ключения пробы	2202
X-XXX	6		Слив пробы из гидравличе-	2.3.8.2
			ской системы модуля изме-	
	1.0	Трубка ПВХ СТ-18	рительного	
	10	Ø _{наруж.} 16×1	Слив отработанной жидкости	
		(далее – трубка для слива	из гидравлической системы	
		пробы)	модуля измерительного	
Х-ПХС	1	проодгу	Слив пробы из гидравличе-	
			ской системы панели пере-	
			ключения пробы	
X-XXX	$11 \rightarrow 9 \rightarrow 4$		Подача реактивов в блок	2.3.8.3
			подачи реактивов из емко-	
			стей с реактивами соответ-	
		леного цвета (далее – трубка	ствующей цветовой марки-	
		для подачи реактивов)	ровкой (таблица 1.13)	
	$8 \rightarrow 12 \rightarrow 7$	Трубка TU0425С с трубкой	Подача градуировочного рас-	2.3.8.4
		термоусадочной белого	твора (пробы) из емкости с	
		цвета (далее – трубка для	градуировочным раствором	
		подачи градуировочного	(пробой) в блок подачи реак-	
		раствора)	тивов	

1, 6, 10 — штуцер сливной; 2, 3, 5 — штуцер подачи пробы (штуцер ШППТ-6-6F ВР63.02.020-06 \varnothing 6 мм); 4 — штуцер ВР79.01.351; 7 — переходник; 8 — разъемное соединение емкости ГРАДУИРОВОЧНОГО РАСТВОРА; 9, 12 — кабельный ввод; 11 — разъемное соединение емкостей А...D

Рисунок 2.10 – Гидравлические соединения анализатора

2.3.8.1 Подсоединение трубок для подачи пробы

Подсоединение трубок к штуцерам подачи пробы производить в соответствии с таблицей 2.1 и рисунками 2.10 и 2.11.

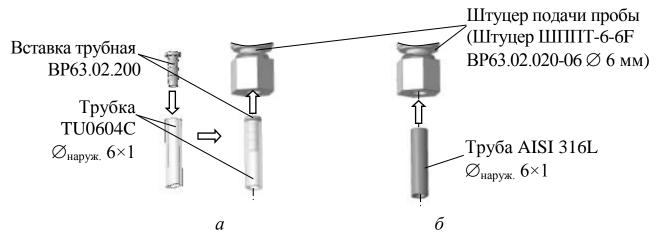


Рисунок 2.11 – Подсоединение трубок для подачи пробы

<u>Примечание</u> — Трубка TU0604C $\varnothing_{\text{наруж.}}$ 6×1 длиной 0,5 м, труба AISI 316L $\varnothing_{\text{наруж.}}$ 6×1 длиной 0,5 м и вставка трубная BP63.02.002 входят в комплект монтажных частей: BP79.12.000 — для исполнений MAPK-1202-X-010; BP79.12.000 и BP79.02.500 — для исполнений MAPK-1202-X-ПХС.

Инструкция по установке трубок в штуцера ШППТ-6-6F BP63.02.020-06 приведена в приложении E.

ПРЕДУПРЕЖДЕНИЕ: Не допускать изломов трубки ТU0604С!

Радиус гиба трубы AISI 316L $\varnothing_{\text{наруж.}}$ 6×1 должен быть не менее 12,5 мм.

2.3.8.2 Подсоединение трубок для слива пробы

Подсоединение трубок к сливным штуцерам производить в соответствии с таблицей 2.1 и рисунками 2.10 и 2.12.

Трубку ПВХ СТ-18 $\varnothing_{\text{внутр.}}$ 16×2 предварительно разделить на части, длину определить по месту.

Рекомендуется при подсоединении трубок для слива пробы использовать стяжки.

Для объединения двух трубок в одну можно воспользоваться тройником TC0216 в соответствии с рисунком 2.12б.

<u>Примечание</u> — Трубка ПВХ СТ-18 $\emptyset_{\text{внутр.}}$ 16×2 длиной 2 м и тройник ТС0216 входят в комплект монтажных частей ВР79.12.000.

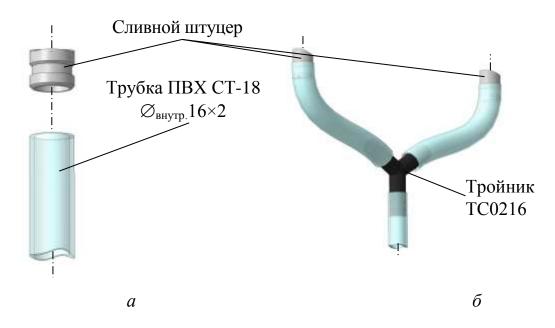


Рисунок 2.12 – Подсоединение сливной трубки

2.3.8.3 Подсоединение трубок подачи реактивов

Подача реактивов осуществляется с использованием трубок, поставляемых внутри емкостей A...D, с учетом цветовой маркировки (таблица 1.13).

Для подсоединения трубок для подачи реактивов в соответствии с таблицей 2.1:

- вывернуть ножки приборные GPE4-8L (далее винт ручной затяжки) и снять пластину BP79.01.030 (рисунок 2.13);
- извлечь трубки из емкостей A...D;
- протянуть трубки через кабельные вводы модуля измерительного в соответствии с рисунком 2.14 и учетом цветовой маркировки;

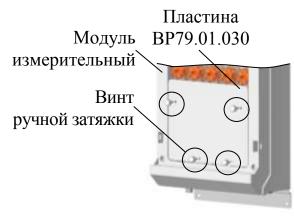
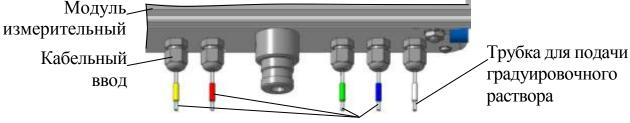



Рисунок 2.13

Трубка для подачи реактивов

Рисунок 2.14 — Соответствие кабельных вводов трубкам подачи реактивов и градуировочного раствора

– открутить гайку ВР79.01.108 в соответствии с рисунком 2.15;

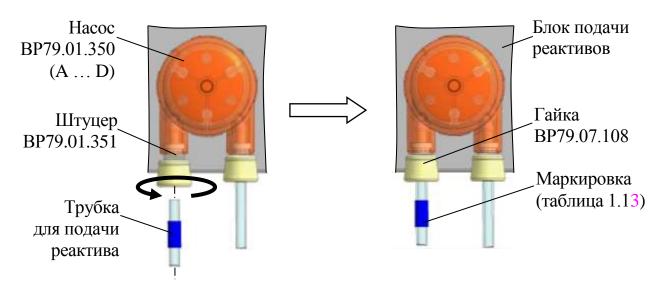
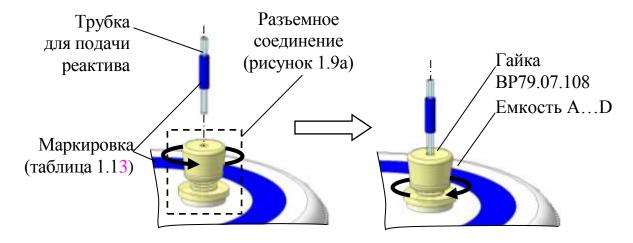



Рисунок 2.15 – Подсоединение трубок подачи реактивов к насосам А... D

- вставить трубку для подачи реактива до упора в штуцер BP79.01.351 согласно цветовой маркировке;
 - затянуть гайку BP79.07.108;
 - при необходимости обрезать длину трубок по месту;
 - открутить гайку BP79.07.108 (рисунок 2.16);
- вставить свободные концы трубки согласно цветовой маркировке в разъемные соединения емкостей А...D и затянуть гайку BP79.07.108 в соответствии с рисунком 2.16;

Pисунок 2.16 - Подсоединение трубок подачи реактивов к емкостям <math>A...D

– отрегулировать трубки по длине, не допуская изломов.

2.3.8.4 Подсоединение трубки для подачи градуировочного раствора

Подача градуировочного раствора в соответствии с таблицей 2.1 осуществляется с использованием трубки, поставляемой внутри емкости ГРАДУИРОВОЧНЫЙ РАСТВОР.

Для этого необходимо:

- протянуть трубку через кабельный ввод в соответствии с рисунком 2.14;
- надеть трубку на переходник согласно маркировке в соответствии с таблицей 1.13 и рисунком 2.17;

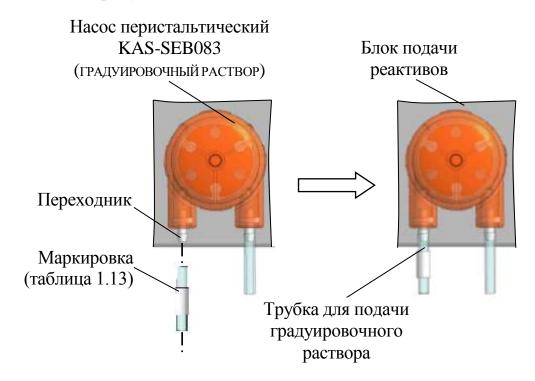


Рисунок 2.17— Подсоединение трубки для подачи градуировочного раствора к насосу ГРАДУИРОВОЧНЫЙ РАСТВОР

- вернуть пластину BP79.01.030 в исходное положение, закрепив ее винтами ручной затяжки в соответствии с рисунком 2.13;
 - обрезать при необходимости трубку по месту;
- вставить свободный конец трубки в разъемное соединение емкости ГРАДУИРОВОЧНЫЙ РАСТВОР в соответствии с рисунком 2.18;
 - отрегулировать трубку по длине, не допуская изломов.

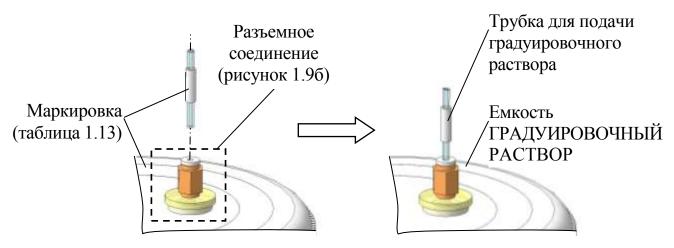


Рисунок 2.18 — Подсоединение трубки для подачи градуировочного раствора к емкости ГРАДУИРОВОЧНЫЙ РАСТВОР

2.3.9 Заземление анализатора

Заземление анализатора произвести медным проводом желто-зеленого цвета сечением не менее 1 мм². Расположение клемм заземления в соответствии с таблицей 2.2.

Таблица 2.2

Таолица 2.2		
Исполнения МАРК-1202-	Составная часть анализатора	Место расположения
K-010	Модуль измерительный	Рисунок 1.3
К-ПХС	Модуль измерительный	Рисунок 1.3
	Панель переключения пробы	Рисунок 1.6
Н-010, Щ-010	Модуль измерительный	Рисунок 1.3
	Блок преобразовательный	Рисунок 1.5
Н-ПХС, Щ-ПХС	Модуль измерительный	Рисунок 1.3
	Блок преобразовательный	Рисунок 1.5
	Панель переключения пробы	Рисунок 1.6

2.3.10 Электрические соединения анализатора

2.3.10.1 Подключение источника питания ИП-1002 к модулю измерительному

Для этого необходимо:

- снять верхнюю крышку модуля измерительного в соответствии с рисунком 2.1, если она не была снята ранее;
- снять заглушку с разъема «—24 В» (вилки РСГ4ТВ), находящегося на верхней панели модуля измерительного;
- подсоединить розетку РС4ТВ источника питания ИП-1002 к разъему «—24 В» модуля измерительного, представленному на рисунке 2.19;

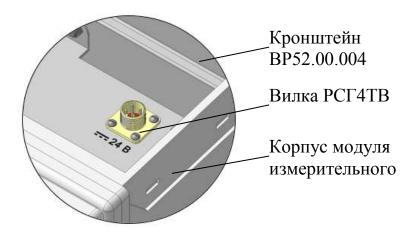


Рисунок 2.19 — Расположение разъема «—24 В» на модуле измерительном

- установить верхнюю крышку на модуль измерительный;
- подключить вилку источника питания ИП-1002 к штепсельной розетке $\sim 220~\mathrm{B}, 50~\mathrm{\Gamma \mu}$ с заземляющим контактом.
- 2.3.10.2 Подключение источника питания ИП-1002 к блоку преобразовательному (исполнения анализатора МАРК-1202-H-XXX и МАРК-1202-Щ-XXX)

Для этого необходимо:

- снять заглушку с вилки РСГ4ТВ;
- подсоединить розетку PC4TB источника питания ИП-1002 к вилке PCГ4TB блока преобразовательного (рисунок 1.5);
- подключить вилку источника питания ИП-1002 к штепсельной розетке $\sim 220~\mathrm{B},\,50~\mathrm{\Gamma}$ ц с заземляющим контактом.

2.3.10.3 Внутренние соединения анализатора (анализатор исполнений MAPK-1202-X-ПХС)

ВНИМАНИЕ: Подключение производить при отключенном питании анализатора и блока преобразовательного (для исполнений МАРК-1202-H-XXX и МАРК-1202-Щ-XXX)!

В общем случае для подключения следует:

- снять крышки подключаемых блоков, отвернув винты крепления крышек (у блока преобразовательного винты расположены под декоративными накладками);
 - провести кабели через кабельные вводы подключаемых блоков;
- произвести подключение кабеля к разъемам, расположенным на платах подключаемых блоков, в соответствии с таблицей 2.3;
 - отрегулировать длину кабеля;
 - вернуть крышки в исходное положение.

Таблица 2.3

1 a0nugu 2.5				
Исполнение				$N_{\underline{0}}$
анализатора	Подключаемые бл	юки анализатора	Кабель	табли-
MAPK-1202-				ЦЫ
К-ПХС	Блок	Блок сигнализации	Кабель сигнализации	2.4
	преобразовательный		BP79.04.000	
		Блок управления	Кабель клапанов	2.5
		клапанами	BP79.05.000	
Н-ПХС	Блок	Блок сигнализации	Кабель сигнализации	2.4
Щ-ПХС	преобразовательный		BP79.04.000	
		Кросс-блок	Кабель соединительный	2.6
			K1202.5 BP79.06.000	
			или	
			кабель соединительный	
			BP79.06.000-01	
	Кросс-блок	Блок управления	Кабель клапанов	2.7
		клапанами	BP79.05.000	

Подключение блока сигнализации к блоку преобразовательному производить в соответствии с таблицей 2.4 и приложением Д.

Таблица 2.4

Разъем	1					
Блок преобразовательный	Блок сигнализации	Контакт	Цепь	Цвет жилы	Назначение	
X13	X2	1	+ 24 B	желтый	Питание блока сигнализации	
AIS	A2	2	– 24 B	желто-белый	от паточно	
V16	V2	1	A	синий	Управление блоком	
X16	X3	2	В	сине-белый	сигнализации	

Подключение блока управления клапанами к блоку преобразовательному производить в соответствии с таблицей 2.5 и приложением Д.

Таблица 2.5

Разъем						
Блок преобразовательный	Блок управления клапанами	Контакт	Цепь	Цвет жилы	Назначение	
X12	X2	1	+ 24 B	желтый	Питание блока управления	
A12	AΔ	2	– 24 B	желто-белый	клапанами	
V15	V2	1	A	синий	Управление блоком управле-	
X15	X3	2	В	сине-белый	ния клапанами	

Подключение кросс-блока к блоку преобразовательному производить в соответствии с таблицей 2.6 и приложением Д.

Таблица 2.6

Разт	ем				
Блок преобразовательны	Кросс-блок	Контакт	Цепь	Цвет жилы	Назначение
X15	X8	1	A	синий	Управление блоком управле-
AIS	Λο	2	В	сине-белый	ния клапанами

Подключение блока управления клапанами к кросс-блоку производить в соответствии с таблицей 2.7 и приложением Д.

Таблииа 2.7

1 40muya 2.7						
	Разъем					
Кросс-блок	Блок управления клапанами	Контакт	Цепь	Цвет жилы	Назначение	
X4	X2	1	+ 24 B	желтый	Питание блока управления кла-	
Λ4	AΔ	2	– 24 B	желто-белый	панами	
V7	V2	1	A	синий	Управление бло- ком управления	
X7	Х3	2	В	сине-белый	клапанами	

2.3.10.4 Внешние подключения анализатора

ВНИМАНИЕ: Подключение внешних устройств производить при отключенном питании внешних устройств и анализатора!

В общем случае для подключения следует:

- снять крышки подключаемых блоков, вывернув винты крепления крышек;
 - провести кабели через кабельные вводы подключаемых блоков;

<u>Примечание</u> – Для удобства подключения к блоку преобразовательному анализатора исполнений MAPK-1202-K-XXX предварительно снять крышку модуля измерительного в соответствии с п. 2.3.2.

- произвести подключение кабеля к разъемам в соответствии таблицей 2.8;
- вернуть крышки в исходное положение.

Таблица 2.8

Исполнение анализатора МАРК-1202-X-	Блок анализатора	Внешнее устройство	№ таблицы
010	Блок преобразовательный	Регистрирующее устройство с токовым выходом	2.9
ПХС	Блок сигнализации	Бын Былодон	
XXX	Блок преобразовательный	Устройство с интерфейсом RS-485	2.10
XXX	Блок преобразовательный	Исполнительное и сигнализирующее устройство	2.11
ПХС	Блок сигнализации	yerponerbo	

Подключение внешнего регистрирующего устройства с токовым выходом производить в соответствии с таблицей 2.9 и приложением Д.

Таблица 2.9

тиол	uya 2	.9								
Исп	Исполнение анализатора МАРК-1202-X-				Разъем Контакт Цен		Цепь	Назначение		
					Блок преобразов	вательный				
		010			V.C	1	IOUT	"I/ 1»		
	010				X6	2	IGND	«K1»		
	Блок сигнализации									
П2С	П3С	П4С	П5С	П6С						
					X4	1	IOUT	«K1»		
+	+	+	+	+ X4	2	Λ4	Α4	2	IGND	(K1)
					V5	1	IOUT	«K2»		
+	+	+	+	+	X5	2	IGND	(K2»		
					X6	1	IOUT	«K3»		
	+	+	+	+	Λυ	2	IGND	(K3)		

Прооолжение тиолицы 2.9								
Исполнение анализатора МАРК-1202-X-		Разъем	Контакт	Цепь	Назначение			
Блок сигнализации								
П3С	П4С	П5С	П6С					
				¥7	1	IOUT	«K4»	
_	+	+	+	Α/	2	2	IGND	(IX4 <i>)</i>)
			_	Vo	1	IOUT	«K5»	
_	١	+	+	Λο	2	IGND	(KJ))	
				Vo	1	IOUT	«K6»	
	2	IGND	«NU»					
	олнен МАР	олнение ан МАРК-120	ПЗС П4С П5С	ПЗС П4С П5С П6С — + + +	ПЗС П4С П5С П6С	ПОЛНЕНИЕ АНАЛИЗАТОРА МАРК-1202-X- БЛОК СИГНАЛИЗАЦИИ ПЗС П4С П5С П6С - + + + +	Полнение анализатора МАРК-1202-X- Разъем Контакт Цепь Блок сигнализации ПЗС П4С П5С П6С 1 IOUT - + + + + X7 2 IGND + + + X8 1 IOUT + X8 1 IOUT - IGND 1 IOUT + X8 1 IOUT	

<u>Примечание</u> – «+» – подключение к разъему доступно; «–» – подключение к разъему недоступно.

<u>Примечание</u> – В диапазонах от 4 до 20 мА и от 0 до 20 мА сопротивление нагрузки не должно превышать 500 Ом, в диапазоне от 0 до 5 мA - 2 кОм.

Подключение интерфейса RS-485 производить к разъему X9 «RS-485» блока преобразовательного в соответствии с таблицей 2.10 и приложением Д.

Таблица 2.10

Контакт	Цепь	Назначение	
1	A	Линия А	
2	В	Линия В	
3 G		Защитное заземление (подключать с одной стороны)	

Подключение внешних исполнительных и сигнализирующих устройств производить в соответствии с таблицей 2.11.

Таблица 2.11

Исполнение анализатора МАРК-1202-X-	Разъем	Контакт	Цепь	Назначение					
Блок преобразовательный									
		3	R1A						
VVV	XXX X5	4	R1B	Общая					
AAA		5	R2A	сигнализация для анализатора					
		6	R2B						

Исполнение анализатора МАРК-1202-X-			Разъем	Контакт	Цепь	Назначение							
					Блок	преобразовател	І ЬНЫЙ						
VVV					37.5	7	R3A	Общая сигнализация					
	XXX				X5	8	R3B	для анализатора					
						3	R1A						
						4	R1B						
		010			X6	5	R2A	Сигнализация					
		010			A0	6	R2B	для канала «К1»					
						7	R3A						
						8	R3B						
					Бл	ок сигнализац	ии						
П2С	П3С	П4С	П5С	П6С									
		+ +				3	R1A						
			+ +		X4	4	R1B						
						5	R2A	Сигнализация					
+	+			+		6	R2B	для канала «К1»					
										7	R3A		
						8	R3B						
						3	R1A						
						4	R1B						
					VF	5	R2A	Сигнализация					
+	+	+	+	+	+	+	+	X5	6	R2B	для канала «К2»		
						7	R3A						
						8	R3B						
						3	R1A						
						4	R1B						
										V	5	R2A	Сигнализация
_	+	+	+	+	X6	6	R2B	для канала «К3»					
						7	R3A						
l						8	R3B						

Исполнение анализатора МАРК-1202-X-				ицы 2 гора	Разъем	Контакт	Цепь	Назначение						
					Бл	ок сигнализац	ии							
						3	R1A							
						4	R1B							
		,	,	,	X7	5	R2A	Сигнализация						
_	_	+	+	+	Λ/	6	R2B	для канала «К4»						
						7	R3A							
						8	R3B							
			- +									3	R1A	
						4	R1B							
					X8 -	5	R2A	Сигнализация						
	_	_		+	+ X8	6	R2B	для канала «К5»						
						7	R3A							
						8	R3B							
П2С	П3С	П4С	П5С	П6С										
						3	R1A							
						4	R1B							
					X9	5	R2A	Сигнализация						
_	_	_	_	+	Λ3	6	R2B	для канала «К6»						
						7	R3A							
						8	R3B							

2.3.11 Подготовка к измерениям

ВНИМАНИЕ: При возникновении неисправностей, капель или течи обратиться к п. 2.9!

- 2.3.11.1 Перед началом измерения ознакомиться с п. 1.4.3.
- 2.3.11.2 Изучить экраны анализатора (Приложение Γ).
- 2.3.11.3 Включить анализатор сетевыми выключателями, расположенными на корпусах блока преобразовательного и кросс-блока (для исполнений МАРК-1202-H-XXX и МАРК-1202-Щ-XXX).

2.3.11.4 Установить параметры работы анализатора в меню «НАСТРОЙКИ».

<u>Примечание</u> – Если доступ к меню «НАСТРОЙКИ» ограничен паролем, следует обратиться к п. 2.5.

Заводские настройки анализатора – в соответствии с таблицей 2.12.

Таблица 2.12

Меню анализатора	Заводские настройки
«ГРАДУИРОВКА»	Автоматическая градуировка отключена: «Интервал автоматической градуировки SiO ₂ , сут» – «0»
«ТОКОВЫЙ ВЫХОД»	Для всех каналов пробы: — «Диапазон тока, мА» — «4-20»; — срабатывание сигнализации при выходе за диапазон выходного тока — отключено; — «Диапазон SiO_2 , мкг/дм ³ »: «минимум» — 0 мкг/дм ³ , «максимум» — 5000 мкг/дм ³
«РЕЛЕ»	Для реле «R1», «R2» и «R3» выбрано событие: — «ЗАКОНЧИЛИСЬ РЕАКТИВЫ» в подменю «ОБЩИЕ»; — «ВЫХОД SiO ₂ ЗА ВЕРХНЮЮ УСТАВКУ» в подменю «К1»«К6»
«RS-485»	«Адрес» — «1»; «Скорость обмена, бит/с» — «19200»; «Четность» — «НЕТ»; «Стоп-бит» — «1»
«ГРАДУИРОВОЧНЫЙ РАСТВОР»	«Текущий объем, см 3 » — 0 см 3 ; «Концентрация SiO $_2$, мкг/дм 3 » — 200 мкг/дм 3
«РЕАКТИВЫ»	«Текущий объем, cm^3 » – $0 cm^3$
«КАНАЛЫ ПРОБЫ»	«Каналы пробы для измерения» – все; «Интервал автоматического измерения, ч» – «О непрер»
«ПАРОЛЬ»	«Пароль доступа к меню» – «123»
«ДИСПЛЕЙ»	«Яркость дисплея» – 100

- 2.3.11.5 Приготовить реактивы в соответствии с приложением В.
- 2.3.11.6 При работе в режиме «ЭКСПРЕСС ИЗМЕРЕНИЕ» подготовить не менее $200~{\rm cm}^3$ пробы, отобранной вручную, в полиэтиленовой (полипропиленовой) посуде.
- 2.3.11.7 Проверить подключение гидравлических и электрических соединений.

Для анализаторов исполнений MAPK-1202-X-ПХС убедиться, что клапаны игольчатые открыты.

<u>Примечание</u> — Если отсутствует взаимодействие с экраном в течение 10 с после включения, анализатор переходит в режим «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ». Для возврата в главное меню обратиться к п. 2.8.1.

2.3.11.8 Опробовать анализатор и проконтролировать герметичность гидравлических соединений.

Для этого следует:

- а) при поступлении пробы по пробоотборной линии:
 - подать анализируемую среду от подключенных пробоотборных линий;
 - установить расход анализируемой среды от 6 до 30 дм³/ч;
 - для определения течей произвести промывку в соответствии с п. 2.7;
- б) при поступлении пробы, отобранной вручную:
- извлечь трубку подачи градуировочного раствора из разъемного соединения, нажав на нажимную втулку (рисунок 1.9б);
- поместить трубку подачи градуировочного раствора в емкость с дистиллированной водой или пробой анализируемой среды;
- произвести промывку в соответствии с пп. 2.7 и Г.6.4, выбрав источником жидкости для промывки канал «К0».
- 2.3.11.9 Провести прокачку реактивов для подачи реактивов к ячейке проточной и проверки герметичности соединений:
- − в меню «НАСТРОЙКИ»/«РЕАКТИВЫ» указать объем реактивов в каждой емкости;
 - нажать клавишу «ПУСК».

<u>Примечание</u> – Если после нажатия клавиши «ПУСК» насосы не начали работу или издают треск, необходимо обратиться к п. 2.9.

2.3.11.10 Провести градуировку анализатора в соответствии с п. 2.4.

2.4 Градуировка анализатора

Градуировка анализатора производится в соответствии с таблицей 2.13 и п. Г.6.3.

Таблица 2.13

Тип	Градуировочная	Градуировочное	Назначение	№
градуировки	жидкость	значение	Пазначение	пп.
Ручная	Очищенная вода	СМЕЩЕНИЕ	Построение градуировочной	2.4.1
(по двум точкам)	OCT 34-70-953.2-88	СМЕЩЕНИЕ	характеристики при первичном	
	Градуировочный	НАКЛОН	запуске анализатора, после за-	
	раствор		мены реактивов, чистки и заме-	
	с концентрацией		ны проточной ячейки, а также	
	SiO ₂ ot 100		при появлении сообщения на	
	до 5000 мкг/дм ³		экране анализатора о необхо-	
			димости провести градуировку	
Автоматическая	Градуировочный	НАКЛОН	Устранение влияния загрязня-	2.4.2
(по одной точке)	раствор		ющих факторов при измерении	
			пробы с концентрацией SiO ₂	
			более 1000 мкг/дм ³ (рекоменду-	
			емый интервал – 7 дней)	

Условия проведения градуировки должны соответствовать п. 1.1.10.

2.4.1 Проведение ручной градуировки

2.4.1.1 Градуировка по очищенной воде

Подготовить две пластиковые емкости с очищенной водой ОСТ 34-70-953.2-88, используемой для приготовления реактивов и градуировочного раствора, объемом не менее 1 дм³ каждая.

Извлечь трубку подачи градуировочного раствора из разъемного соединения емкости ГРАДУИРОВОЧНЫЙ РАСТВОР, нажав на нажимную втулку (рисунок 1.9б), и поместить в первую емкость с очищенной водой.

Провести промывку анализатора из канала «КО» в соответствии с п. 2.7 в течение 2 мин.

Далее погрузить трубку подачи градуировочного раствора во вторую емкость с очищенной водой.

В меню «ГРАДУИРОВКА» выбрать подменю «SiO₂», указать концентрацию SiO₂ – 0 мкг/дм³. Нажать клавишу «ВЫПОЛНИТЬ ГРАДУИРОВКУ».

Далее произвести градуировку по второй точке – градуировочному раствору (п. 2.4.1.2).

2.4.1.2 Градуировка по градуировочному раствору

Подготовить градуировочный раствор объемом не менее 200 см 3 с концентрацией SiO_2 , близкой к измеряемому значению (либо к среднему значению, если каналов пробы больше одного), но не менее 100 мкг/дм^3 .

Градуировочный раствор готовят в соответствии с приложением Б путем последовательного разбавления раствора А очищенной водой аналогично приготовлению контрольных растворов.

Объем раствора А V_A , см³, необходимый для приготовления градуировочного раствора с массовой концентрацией SiO₂ $C_{op,p}$, мкг/дм³, рассчитывают по формуле

$$V_A = \frac{C_{zp.p.} \cdot V_{zp.p.}}{C_A},\tag{1}$$

где $V_{\mathcal{P}.p.}$ – объем приготовляемого градуировочного раствора, см³;

 C_A — массовая концентрация SiO2 раствора A, мкг/дм³.

Залить градуировочный раствор в емкость ГРАДУИРОВОЧНЫЙ РАСТВОР (цвет «белый») и закрыть крышкой ВР79.07.101 с установленной трубкой подачи градуировочного раствора.

<u>Примечание</u> — При необходимости подачи градуировочного раствора из другой емкости трубку подачи градуировочного раствора извлечь из разъемного соединения крышки емкости, нажав на нажимную втулку (рисунок 1.96), и поместить в градуировочный раствор.

В меню «ГРАДУИРОВКА» выбрать подменю «SiO₂», указать концентрацию SiO₂, мкг/дм³, градуировочного раствора и нажать клавишу «ВЫПОЛНИТЬ ГРАДУИРОВКУ».

По окончании градуировки на экране анализатора отображаются характеристики текущей градуировки (СМЕЩЕНИЕ, НАКЛОН).

При необходимости сохранить характеристики градуировки нажатием клавиши «СОХРАНИТЬ В АРХИВ».

2.4.2 Проведение автоматической градуировки

Автоматическая градуировка производится между циклами измерений в режиме «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» или по окончании измерения в режиме «ЭКСПРЕСС ИЗМЕРЕНИЕ» с интервалом, устанавливаемым пользователем.

Для проведения автоматической градуировки подготовить градуировочный раствор в соответствии с п. 2.4.1.2, учитывая, что для проведения одной градуировки требуется 200 см³ градуировочного раствора.

Залить градуировочный раствор в емкость ГРАДУИРОВОЧНЫЙ РАСТВОР (цвет «белый») и закрыть крышкой ВР79.07.101 с установленной трубкой подачи градуировочного раствора.

В подменю «НАСТРОЙКИ»/«ГРАДУИРОВОЧНЫЙ РАСТВОР» указать объем и концентрацию SiO₂ градуировочного раствора.

В меню «ГРАДУИРОВКА» нажать клавишу «НАСТРОЙКИ АВТОГРА-ДУИРОВКИ» и ввести значение интервала автоматической градуировки:

- для проведения операции от «1» сут (рекомендуемый интервал градуировки 14 дней);
 - для отключения операции «0» сут.

Автоматическая градуировка настроена.

2.5 Управление уровнем доступа

- 2.5.1 Для доступа к меню «НАСТРОЙКА» и «ГРАДУИРОВКА» необходимо ввести пароль (по умолчанию, пароль «123»).
- 2.5.2 Для ограничения доступа к меню «НАСТРОЙКА» и «ГРАДУИ-РОВКА» выполнить одно из действий:
 - завершить работу анализатора нажатием клавиши «ОТКЛЮЧИТЬ»;
 - перезагрузить анализатор нажатием клавиши «ПЕРЕЗАГРУЗКА»;
- перейти в меню «НАСТРОЙКА»/«ПАРОЛЬ» и нажать клавишу «СБРОСИТЬ УРОВЕНЬ ДОСТУПА К МЕНЮ».
- 2.5.3 Для изменения пароля перейти в меню «НАСТРОЙКА»/«ПАРОЛЬ» и установить новый пароль.

2.6 Проведение измерений

ВНИМАНИЕ: Проводить измерения только при условии отсутствия неисправностей в измеряемом канале!

При возникновении неисправностей обратиться к п. 2.9.

- 2.6.1 При необходимости подготовить анализатор в соответствии с п. 2.3 и провести градуировку в соответствии с п. 2.4.
- 2.6.2 Для циклического измерения пробы, поступающей по пробоотборной линии, перейти в режим «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» автоматически запустится измерение.

<u>Примечание</u> – Если отсутствует взаимодействие с экраном в течение 10 с после включения, анализатор автоматически переходит в режим «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ».

По окончании цикла измерения (12 мин) на экране анализатора отобразятся установившиеся показания SiO_2 , мкг/дм³, и температуры, °C, а также дата и время последнего измерения в канале.

Далее для анализатора исполнений MAPK-1202-X-010 снова запустится измерение в соответствии с установленным интервалом автоматического измерения (Г.6.5.7); для анализатора исполнений MAPK-1202-X-ПХС — сразу запустится измерение в следующем канале, а по окончании анализа пробы во всех каналах начнется следующий цикл измерения в соответствии с установленным интервалом автоматического измерения.

Через установленный пользователем интервал времени запустится повторный цикл измерения — если для анализа доступен только один канал, либо цикл измерения в следующем канале — если для анализа доступны более одной пробоотборной линии.

- 2.6.3 Для разового измерения пробы, поступающей по пробоотборной линии:
- перейти в режим «ЭКСПРЕСС ИЗМЕРЕНИЕ»;
- выбрать канал пробы для измерения «К1»...«К6»;
- нажать клавишу «ПУСК».

По окончании цикла измерения (12 мин) на экране анализатора отобразятся установившиеся показания.

- 2.6.4 Для измерения пробы, отобранной вручную:
- при необходимости извлечь трубку подачи градуировочного раствора из разъемного соединения, нажав на нажимную втулку (рисунок 1.9б);
- поместить трубку подачи градуировочного раствора в емкость с анализируемой средой;
 - перейти в режим «ЭКСПРЕСС ИЗМЕРЕНИЕ»;
 - выбрать канал пробы для измерения «К0»;
 - нажать клавишу «ПУСК».

По окончании цикла измерения (12 мин) на экране анализатора отобразятся установившиеся показания.

<u>Примечание</u> — Показания на экране анализатора обновляются после завершения последующего цикла измерения и хранятся в архиве.

2.7 Промывка

Промывка гидравлической системы анализатора требуется для устранения отложений и остатков реактивов, оказывающих влияние на результаты измерений, и выполняется:

- после остановки работы анализатора более чем на сутки;
- перед длительным хранением;
- перед транспортированием.

Для проведения промывки необходимо:

- перейти в режим «ПРОМЫВКА» (п. Г6.4);
- выбрать источник жидкости для промывки;

<u>Примечание</u> — Если в качестве источника жидкости для промывки выбран канал «K0», предварительно поместить трубку подачи градуировочного раствора в емкость с дистиллированной водой.

- задать длительность промывки (рекомендуемое значение 3 мин);
- запустить промывку нажатием клавиши «ПУСК».

По окончании процедуры для возврата в главное меню нажать клавишу «
 » в строке заголовка.

2.8 Перерыв в работе анализатора

- 2.8.1 Для остановки измерения следует:
- 1) в режиме «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ»:
 - в строке заголовка нажать клавишу « 🛈 » или « 🤊»;
- в появившемся окне подтвердить остановку измерения нажатием клавиши «ОК»;
- выполнить промывку анализатора пробой из ранее измеряемого канала в соответствии с п. 2.7;
- 2) в режиме «ЭКСПРЕСС ИЗМЕРЕНИЕ» если запущено измерение, то прервать его нажатием клавиши «СТОП».
 - 2.8.2 При перерыве в работе анализатора:
 - при необходимости остановить измерение в соответствии с п. 2.8.1;
- произвести промывку пробой или дистиллированной водой в соответствии с п. 2.7;
 - перекрыть подачу анализируемой среды;
- завершить работу анализатора нажатием клавиши «ОТКЛЮЧИТЬ» в главном меню;
- перевести сетевой выключатель блока преобразовательного и кросс-блока (при наличии) в выключенное положение.

2.9 Возможные неисправности, ошибки, предупреждения и методы их устранения

2.9.1 Возможные неисправности, несопровождаемые индикацией на экране анализатора, и методы их устранения приведены в таблице 2.14.

Таблица 2.14

Неисправность	Вероятная причина	Методы устранения
Анализатор не включается	Отсутствует питание источника питания ИП-1002	Обеспечить питание источника питания ИП-1002 от сети переменного тока согласно п. 1.1.14
	Нарушен контакт источника питания ИП-1002 с модулем измерительным или блоком преобразовательным	п. 2.3.10.1 или п. 2.3.10.2 Проверить и обеспечить надежный контакт
	Неисправен источник питания ИП-1002	Раздел 4 Ремонт в заводских условиях
	Неисправен блок преобразовательный	Раздел 4 Ремонт в заводских условиях
Насос не работает или издает треск при работе	Нарушено положение роликов насоса	Повернуть корпус насоса на 10% - 15 % против часовой стрелки с небольшим усилием и вернуть в исходное положение до характерного щелчка в соответствии с рисунком 2.20

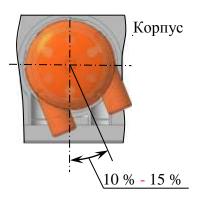


Рисунок 2.20

2.9.2 На экране измерений могут индицироваться дополнительные сообщения, сигнализирующие об ошибках и предупреждениях в соответствии с рисунком 2.22.

2.9.2.1 Возможные ошибки, сопровождаемые индикацией символа « на экране анализатора, и методы их устранения приведены в таблице 2.15.

Рисунок 2.21 – Индикация ошибок и предупреждений

Таблица 2.15

ОШ	равность, пибки, проявление Сообщение	Вероятная причина	Методы устранения
<u>мкг</u> дм ³	«Отсутствует проба в канале КХ ¹⁾ »	Нарушена герметич- ность гидравлической системы	Проверить гидравлические соединения и обеспечить их герметичность: — завернуть гайку накидную ВР63.01.113 штуцера ШППТ-6-6F (приложение E); — заменить подводящие трубки
		Отсутствует проба Неисправность датчика давления	Обеспечить наличие пробы Раздел 4 Ремонт в заводских условиях
$\frac{MK\Gamma}{M^3}$	«Ошибка измерения»	Системная ошибка	Перезагрузить анализатор, нажав клавишу «ПЕРЕЗАГРУЗКА». Если ошибка повторилась, то анализатор подлежит ремонту в заводских условиях (раздел 4)

Неисп ош	ние таолицы равность, побки, проявление	Вероятная причина	Методы устранения
Индикация			
	«Реактивы закончились»	Реактивы закончились	п. 3.3.4.1 Восполнить объем реактивов
-		Неверно введено значение текущего объема реактивов в подменю «РЕАКТИВЫ»	Актуализировать значение текущего объема реактивов в подменю «НАСТРОЙКИ»/«РЕАКТИВЫ»
_	«Ошибка в блоке сигна- лизации»	Системная ошибка	Перезагрузить анализатор, нажав клавишу «ПЕРЕЗАГРУЗКА». Если ошибка повторилась, то анализатор подлежит ремонту в заводских условиях (раздел 4)
		Нарушен контакт блока сигнализации с блоком преобразовательным	п. 2.3.10.3 Проверить и обеспечить надежный контакт
-	«Критическое загрязнение ячейки»	Загрязнена ячейка проточная	п. 3.3.3.3 Очистить ячейку проточную
	«КХ ¹⁾ исключен из списка обслуживания, отсут-		Обеспечить поток пробы в канале « KX^1 », затем активировать этот канал в меню «НАСТРОЙКИ» / « KA -НАЛЫ ПРОБЫ»
_	ствует проба»	Нарушена герметич- ность гидравлической системы	Проверить гидравлические соединения и обеспечить их герметичность:
			- завернуть гайку накидную BP63.01.113 штуцера ШППТ-6-6F (приложение E); - заменить подводящие трубки; - активировать канал «КХ» в меню «НАСТРОЙКИ» / «КАНАЛЫ ПРОБЫ»
-	«F1 — Ошибка градуировки SiO ₂ »	Содержание SiO_2 в воде для градуировки превышает допустимое значение (1 мкг/дм 3)	Использовать воду для градуировки с содержанием SiO ₂ менее 1 мкг/дм ³
	νΕΟ Ο	Загрязнены реактивы	п. 3.3.4.1 Заменить реактивы
_	«F2 — Ошибка градуировки SiO ₂ »	Указано неверное значение SiO ₂ градуировочного раствора в меню «НАСТРОЙКИ»/ «ГРАДУИРОВОЧНЫЙ РАСТВОР»	Ввести верное значение SiO ₂ граду- ировочного раствора в меню «НАСТРОЙКИ» / «ГРАДУИРО- ВОЧНЫЙ РАСТВОР»
		Некорректно приготов- лен градуировочный раствор	п. 3.3.4.2 Заменить градуировочный раствор

	ние таолицы	2.13	<u></u>
	равность,		
	ибки, проявление	Вероятная причина	Методы устранения
	-	Беролинал при инна	тиетоды устранения
Индикация	Сообщение		
	«F3 – Ошибка	±	п. Г.6.3 Ввести верное значение
	градуировки	чение SiO ₂ градуиро-	SiO ₂ градуировочного раствора в
	SiO ₂ »	вочного раствора в ме-	меню «ГРАДУИРОВКА»
_		ню «ГРАДУИРОВКА»	22422
		Неправильно приготов- лен градуировочный	п. 3.3.4.2 Заменить градуировочный
		раствор	раствор
0.0	«Ошибка	Неисправность датчика	Перезагрузить анализатор, нажав
···°C	измерения	температуры	клавишу «ПЕРЕЗАГРУЗКА».
	температуры»	1 71	Если ошибка повторилась, то ана-
			лизатор подлежит ремонту в завод-
			ских условиях (раздел 4)
55,2 °C	«Температура	Температура анализи-	Привести температуру анализируе-
	анализируе-	руемой среды находит-	мой среды к допускаемым значени-
	мой среды в канале KX^{1}	•	MR
	канале KX ¹⁾ вышла за	пределами измерений	
	допустимые		
	пределы»		
	«Измеренное	Значение SiO ₂ выходит	Устранить несоответствие, подав
	значение SiO ₂	за пределы уставок	раствор со значением SiO ₂ в преде-
или	в канале КХ1)		лах уставок, либо изменить значе-
>▼<	вышло за пре-		ние уставок SiO ₂ в меню
✓ ▼ \	делы уставок»		«НАСТРОЙКИ»/«РЕЛЕ»
	«Измеренное	Значение SiO ₂ выходит	Устранить несоответствие, подав
1-000	значение SiO ₂		раствор со значением SiO ₂ в преде-
93-97-80	в канале КХ1)	токовому выходу	лах уставок, либо изменить значе-
100	выходит за		ние пределов диапазона SiO ₂ по то-
или	диапазон из-		ковому выходу в меню «НАСТРОЙКИ»/«ТОКОВЫЙ ВЫ-
5	мерений по токовому вы-		«пастройки»/«токовый вы- ХОД»
190 1 (ходу»		104"

 $^{^{1)}}$ «X» — принимает значение от 1 до 6 в соответствии с нумерацией канала с зафиксированной ошибкой.

2.9.2.2 Возможные предупреждения, сопровождаемые индикацией символа « » на экране анализатора, и методы их устранения приведены в таблице 2.16.

Таблица 2.16

<u>1 иолици 2.</u>	10	-	T
предуп	равность, реждение, проявление Сообщение	Вероятная причина	Методы устранения
_	«Градуиро- вочный рас- твор закон- чился»	Отсутствует градуировочный раствор Неверно введено значение текущего объема градуировочного раствора в подменю «НАСТРОЙКИ» / «ГРАДУИРОВОЧНЫЙ РАСТВОР»	п. 3.3.4.2 Залить градуировочный раствор Актуализировать значение текущего объема градуировочного раствора в подменю «НАСТРОЙКИ» / «ГРАДУИРОВОЧНЫЙ РАСТВОР»
_	«Рекоменду- ется очистка ячейки»	Загрязнение проточной ячейки, не влияющее на результаты измерения	п. 3.3.3.3 Рекомендуется очистить проточную ячейку
_	«Требуется градуировка SiO ₂ »	Не удалось провести автоматическую граду- ировку	пп. 2.4.1.2, 2.4.2 Провести градуировку и настроить повторно автоматическую градуировку
_	«Реактивы заканчивают- ся»	Объем реактивов менее 200 дм ³ Неверно введено значение текущего объема реактивов в подменю «РЕАКТИВЫ»	п. 3.3.4.1 Проконтролировать текущий объем реактивов, запланировать замену реактивов Актуализировать значение текущего объема реактивов в подменю «НАСТРОЙКИ» / «РЕАКТИВЫ
12:00 01.01.2020	«Результаты измерения в канале KX^{1} устарели»	Не проводились измерения в канале KX^{1} длительное время	Устранить причины, препятствующие измерению

 $^{^{1)}}$ «X» — принимает значение от 1 до 6 в соответствии с нумерацией канала с зафиксированной ошибкой.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Меры безопасности

Все виды технического обслуживание (TO) выполняются квалифицированным оперативным персоналом, изучившим настоящее руководство по эксплуатации и меры безопасности при работе с химическими реактивами.

3.2 Общие указания

- 3.2.1 TO анализатора включает в себя операции нерегламентированного и регламентированного обслуживания.
 - 3.2.2 В состав нерегламентированного ТО входят:
 - эксплуатационный уход;
- содержание анализатора в исправном состоянии, включая устранение неисправностей;
- своевременная замена изделий с ограниченным ресурсом и расходных материалов.
- 3.2.3 Регламентированное ТО реализуется в форме плановых ТО, объем и периодичность которых приведены в таблице 3.1.

Таблица 3.1

№ пп. РЭ	Наименование работы	Периодич	ность ТО
15		раз в три месяца	ежегодно
3.3.1	Внешний осмотр	*	+
3.3.2	Проверка функционирования анализатора	*	+
3.3.3	Чистка составных частей анализатора:	*	+
	модуля измерительного;		
	сенсорного индикатора;		
	– ячейки проточной		
3.3.4	Замена расходных материалов:	*	+
	– реактивов;		
	 градуировочного раствора; 		
	 фильтрующего материала (синтепона) 		
	Замена трубок:		
3.3.5	— TLM0201N, TU0425C и TU0604C;	*	*
3.3.3	$-\varnothing_{\text{наруж}} 4\times1,\varnothing_{\text{наруж}} 4\times1,5;$	*	+
	$-\varnothing_{\text{внут}} 2\times 1, \varnothing_{\text{внут}} 2\times 1, 5$	*	+

<u>Примечание</u> — «+» — техническое обслуживание проводят; «*» — техническое обслуживание проводят при необходимости.

3.2.4 Обнаруженные при плановом ТО дефекты узлов и деталей, которые при дальнейшей эксплуатации анализатора могут нарушить его работоспособность, должны быть устранены. При невозможности устранения дефектов своими силами следует обратиться в ООО «ВЗОР».

3.3 Техническое обслуживание составных частей

3.3.1 Внешний осмотр

При проведении внешнего осмотра анализатора проверяют:

- отсутствие механических повреждений;
- исправность разъемов, соединительных кабелей;
- отсутствие протечек в местах соединений гидравлических частей;
- правильность и четкость маркировки.

3.3.2 Проверка функционирования анализатора

Для проведения проверки функционирования анализатора выборочно проверяют работоспособность клавиш в соответствии с приложением Г.

Результат проверки считают удовлетворительным, если при проверке функциональности клавиш они отвечают установленным в приложении Г требованиям к назначению.

3.3.3 Чистка составных частей анализатора

3.3.3.1 Чистка модуля измерительного и панели переключения пробы

Перед проведением чистки перевести выключатель сетевой в выключенное положение.

Чистку наружной поверхности модуля измерительного и панели переключения пробы в случае загрязнения производить с использованием мягких моющих средств, с последующим очищением мягкой тканью, смоченной дистиллированной водой.

- 1 ПРЕДОСТЕРЕЖЕНИЕ: НЕ ДОПУСКАТЬ попадания жидкости на разъемы анализатора!
- 2 ПРЕДОСТЕРЕЖЕНИЕ: НЕ ИСПОЛЬЗОВАТЬ щелочные растворы при очистке блока преобразовательного!

<u>Примечание</u> — В качестве мягкого моющего средства можно использовать мыльный раствор: 40-50 г стружки мыла по ГОСТ 28546-2002 растворить в 300-400 см³ горячей воды.

3.3.3.2 Чистка сенсорного индикатора

- 1 ВНИМАНИЕ: ЧИСТКУ ОСУЩЕСТВЛЯТЬ СУХОЙ МЯГКОЙ ТКАНЬЮ! Влажная ткань может оставлять разводы и повлиять на работу сенсора.
- 2 ВНИМАНИЕ: НЕ ОСТАВЛЯЙТЕ пыль в зазоре между корпусом и стеклом!
- **3 ПРЕДОСТРЕЖЕНИЕ: НЕ ИСПОЛЬЗУЙТЕ растворители и промышленные спиртосодержащие очистители!**
- 4 ПРЕДОСТЕРЕЖЕНИЕ: НЕ РАСПЫЛЯЙТЕ жидкости и чистящие вещества непосредственно на сенсорный индикатор!

Перед проведением чистки сенсорного индикатора перевести выключатель сетевой в выключенное положение.

Чистку сенсорного индикатора в случае загрязнения производить средствами, предназначенными для очистки дисплеев.

3.3.3.3 Чистка ячейки проточной

Для этого необходимо:

- а) остановить процесс измерений анализатора в соответствии с п. 2.8.1;
- б) перекрыть подачу анализируемой среды к анализатору;
- в) перевести выключатель сетевой в выключенное положение;
- г) извлечь ячейку BP79.01.240 в сборе с трубкой силиконовой медицинской $\emptyset_{\text{внутр}}$ 25×3 (далее ячейку) в соответствии с рисунком 3.1 в следующей последовательности:
 - вывернуть винты ручной затяжки GPE4-8L и снять пластину BP79.01.030;
 - вывернуть винт ручной затяжки GPE4-12L;
 - снять крышку ВР79.01.202;
- снять крышку BP79.01.201 в сборе с датчиком температуры BP52.02.300, тройником BP79.01.290 и прокладкой BP79.01.206;
 - ослабить винты ручной затяжки блока фотодиода ВР79.01.230;
 - извлечь ячейку;
- д) промыть ячейку и магнит дистиллированной водой, удалить отложения со стенок ячейки (например, ватной палочкой);

<u>Примечание</u> – При обнаружении на ячейке BP79.01.240 и магнитной мешалке дефектов или при невозможности осуществить очистку следует заменить их на новые из комплекта запасных частей BP79.13.000.

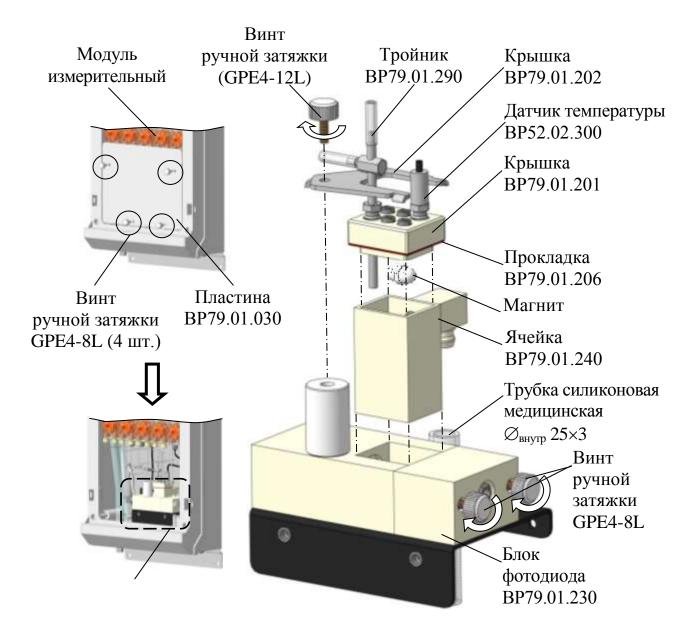


Рисунок 3.1 – Извлечение ячейки проточной ВР79.01.240

- е) убедиться, что на внешней поверхности ячейки отсутствуют загрязнения (например, отпечатки пальцев), при необходимости протереть ячейку мягкой тканью;
 - ж) поместить магнит в ячейку;
- 3) собрать ячейку проточную BP79.01.200 в соответствии п. 3.3.3.3 в обратном порядке и проконтролировать герметичность соединений (обратить внимание на соединение трубки силиконовой и ячейки проточной);
 - и) обеспечить подачу анализируемой среды;
 - к) перевести выключатель сетевой во включенное положение;
 - л) выполнить градуировку анализатора в соответствии с п. 2.4.1;
 - м) возобновить процесс измерения.

3.3.4 Замена расходных материалов

3.3.4.1 Замена реактивов

Для этого необходимо:

- остановить процесс измерений анализатора в соответствии с п. 2.8.1;
- приготовить реактивы в соответствии с приложением В;
- указать текущий объем реактивов в подменю «НАСТРОЙКИ» / «РЕ-АКТИВЫ» и произвести прокачку реактивов, нажав клавишу «ПУСК»;
 - выполнить градуировку анализатора в соответствии с п. 2.4.1;
 - возобновить измерения.

<u>Примечание</u> – Реактивы и градуировочный раствор должны быть приготовлены с использованием воды одного класса. Если это требование нарушено при замене реактивов, следует заменить градуировочный раствор в соответствии с п. 3.3.4.2, используя для приготовления градуировочного раствора ту же воду, что и для приготовления реактивов.

3.3.4.2 Замена градуировочного раствора

Для этого необходимо:

- тщательно промыть емкость ГРАДУИРОВОЧНЫЙ РАСТВОР;
- приготовить градуировочный раствор и провести градуировку в соответствии с п. 2.4.1.2;
- обновить в меню «ГРАДУИРОВОЧНЫЙ РАСТВОР» значения текущего объема градуировочного раствора и концентрации SiO₂;
 - возобновить измерения.

<u>Примечание</u> — Реактивы и градуировочный раствор должны быть приготовлены с использованием воды одного класса. Если это требование нарушено при замене градуировочного раствора, следует заменить реактивы в соответствии с п. 3.3.4.1, используя для приготовления реактивов ту же воду, что и для приготовления градуировочного раствора.

3.3.4.3 Замена фильтрующего материала (синтепона)

Для этого необходимо:

- остановить процесс измерений анализатора в соответствии с п. 2.8.1;
- перекрыть подачу анализируемой среды к анализатору;
- слить анализируемую среду из корпуса BP79.01.412, отвернув крышку BP49.02.203, расположенную на нижней панели модуля измерительного рядом со штуцером подачи пробы в соответствии с рисунком 3.2;

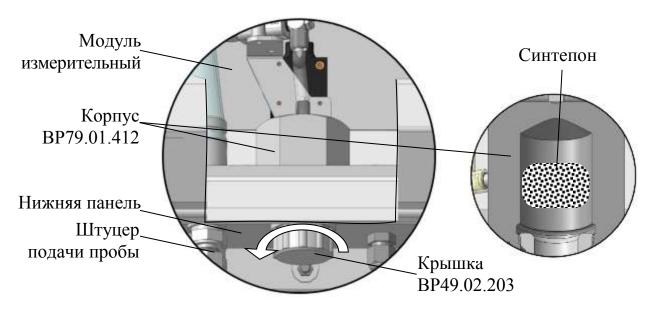


Рисунок 3.2 – Замена фильтрующего материала (синтепона)

– заменить фильтрующий материал (синтепон), расположенный внутри корпуса BP79.01.412, на новый (0,1 г);

<u>Примечание</u> – Синтепон (0,3 г) входит в комплект запасных частей BP79.13.000.

- завернуть крышку ВР49.02.203, обеспечив герметичность соединения;
- подать анализируемую среду в гидравлическую систему анализатора;
- возобновить процесс измерения.

3.3.5 Замена трубок

Замена трубок производится в соответствии с таблицей 3.2.

Таблица 3.2

Типоразмер	Материал	Назначение	№ пп.
TLM0201N		Подача реактивов от емкости А D в ячейку проточную с помощью насоса А D	3.3.5.1
TU0425C	Перфторалкоксидный полимер	Подача градуировочного раствора и пробы от емкости в ячейку проточную с помощью насоса ГРАДУИРОВОЧНЫЙ РАСТВОР	
TU0604C	•	Слив пробы из гидравлической системы модуля измерительного и подача пробы в гидравлическую систему панели переключения пробы	
Ø _{наруж} 4×1		Обеспечение подачи реактивов насосом A D	3.3.5.2
Ø _{наруж} 4,5×1	Неопрен	Обеспечение подачи градуировочного раствора насосом ГРАДУИРОВОЧНЫЙ РАСТВОР	

Типоразмер	Материал	Назначение	№ пп.
Ø _{внут} 2×1	C	Уплотнение обратного клапана в емкостях АD и ГРАДУИРОВОЧНЫЙ РАСТВОР	3.3.5.3
Ø _{внут} 2×1,5	Силикон	Уплотнение штуцеров BP79.01.351 насоса A D	3.3.5.4

<u>Примечание</u> – Трубки входят в комплект запасных частей ВР79.13.000.

3.3.5.1 Замена трубок TLM0201N, TU0425C и TU0604C

Расположение трубок TLM0201N, TU0425C и TU0604C – в соответствии с рисунком 3.3.

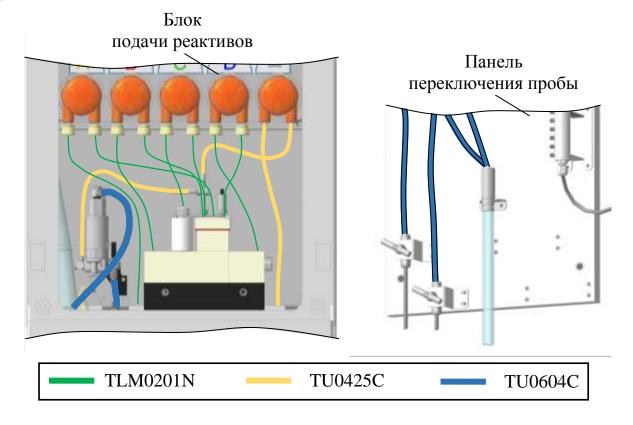
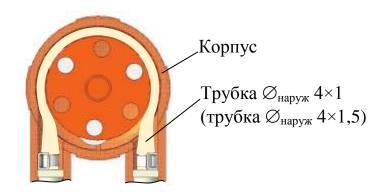


Рисунок 3.3 – Расположение трубок TLM0201N, TU0425C и TU0604C

Для замены трубок TLM0201N, TU0425C и TU0604C необходимо:

- а) подготовить емкость с дистиллированной водой вместимостью не менее $250~{\rm cm}^3$;
 - б) остановить процесс измерений анализатора в соответствии с п. 2.8.1;
 - в) перекрыть подачу анализируемой среды к анализатору;
- г) вывернуть винты ручной затяжки GPE4-8L и снять пластину BP79.01.030 в соответствии с рисунком 3.1;


- д) при замене трубок TLM0201N (далее трубка для подачи реактивов) и TU0425C (далее трубка для подачи градуировочного раствора) необходимо:
- трубки извлечь из емкостей и поместить в емкость с дистиллированной водой;
- выполнить операцию «ПРОКАЧКА РЕАКТИВОВ» (п. Г.6.5.6), а затем «ПРОМЫВКА», дистиллированной водой;
 - извлечь все трубки из емкости;
- выполнить операции «ПРОКАЧКА РЕАКТИВОВ» и «ПРОМЫВКА» (из канала «КО») воздухом;
 - е) заменить трубку на новую;
 - ж) вернуть пластину ВР79.01.030 в исходное положение;
 - з) возобновить подачу анализируемой среды;
- и) произвести промывку и проконтролировать герметичность гидравлической системы анализатора.

3.3.5.2 Замена трубок $\emptyset_{\text{наруж}}$ 4×1 и $\emptyset_{\text{наруж}}$ 4,5×1

Трубки $\emptyset_{\text{наруж}}$ 4×1 располагаются в штуцерах насосов А...D, трубка $\emptyset_{\text{наруж}}$ 4,5×1 — в штуцере насоса ГРАДУИРОВОЧНЫЙ РАСТВОР в соответствии с рисунком 3.4.

Для замены следует:

- а) подготовить емкость с дистиллированной водой вместимостью не менее $250~{\rm cm}^3$;
 - б) остановить процесс измерений анализатора в соответствии с п. 2.8.1;
 - в) выполнить операции в соответствии с перечислением д) п. 3.3.5.1;
- г) вывернуть винты ручной затяжки GPE4-8L и снять пластину BP79.01.030 в соответствии с рисунком 3.1;
- д) ослабить гайку BP79.07.108 и отсоединить трубки для подачи реактивов от штуцеров BP79.01.351 (трубку для подачи градуировочного раствора от переходников) в соответствии с рисунком 3.4;
- е) повернуть корпус насоса на 10 % -15 % против часовой стрелки до выхода его из пазов зацепления;
- ж) разобрать насос в соответствии с рисунком 3.4, снять стяжки и трубку $\emptyset_{\text{наруж}}$ 4×1 ($\emptyset_{\text{наруж}}$ 4,5×1);
- 3) установить новую трубку $\emptyset_{\text{наруж}}$ 4×1 85 мм на штуцера BP79.01.351 ($\emptyset_{\text{наруж}}$ 4,5×1 на переходник) и закрепить стяжками;
 - и) собрать насос и вернуть в исходное положение;
 - к) вернуть пластину ВР79.01.030 в исходное положение;
- л) установить трубки для подачи реактивов (трубку для подачи градуировочного раствора) в емкости в соответствии с маркировкой;
- после замены трубки $\varnothing_{\mbox{\tiny наруж}}$ $4{\times}1$ осуществить прокачку реактивов и проконтролировать герметичность соединений;
 - возобновить процесс измерения.

а – насос в сборе (вид сзади)

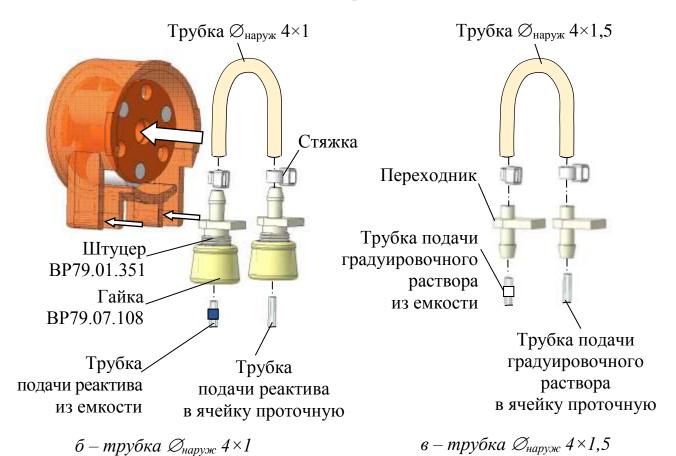


Рисунок 3.4 — Расположение трубок $\mathcal{O}_{\text{наруж}}$ 4×1 и $\mathcal{O}_{\text{наруж}}$ $4,5 \times 1$

3.3.5.3 Замена трубки $\varnothing_{\text{внут}} 2 \times 1$

Для замены необходимо:

- остановить процесс измерений анализатора в соответствии с п. 2.8.1;
- выкрутить гайку BP79.07.108-01 (далее гайку) и извлечь обратный клапан в соответствии с рисунком 3.5;
- извлечь старую трубку из штуцера BP79.07.102 и установить новую трубку $\varnothing_{\text{внут}}$ 2×1 8 мм;
 - накинуть гайку;
 - установить обратный клапан плоской поверхностью вверх и затянуть гайку.

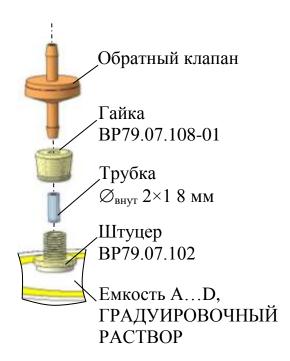


Рисунок 3.5 – Расположение трубки $\mathcal{O}_{\text{внут}}$ 2×1

3.3.5.4 Замена трубок $\emptyset_{\text{внут}}$ 2×1,5

Трубки $\emptyset_{\text{внут}}$ 2×1,5 располагаются в штуцерах BP79.01.351 и BP79.07.108 (далее – штуцеры) в соответствии с рисунком 3.6.

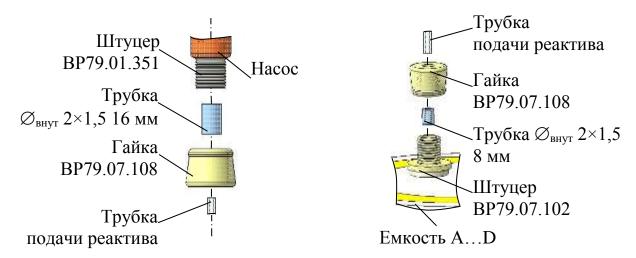


Рисунок 3.6 – Расположение трубок $\mathcal{Q}_{\text{внут}}$ 2×1,5

Для замены следует:

- подготовить емкость с дистиллированной водой объемом не менее $250~{\rm cm}^3$;
 - остановить процесс измерений анализатора в соответствии с п. 2.8.1;
- трубки для подачи реактивов извлечь из емкостей A…D и поместить в емкость с дистиллированной водой;

- выполнить операцию «ПРОКАЧКА РЕАКТИВОВ» (п. Г.6.5.6) дистиллированной водой;
 - извлечь трубки из емкостей;
- вывернуть винты ручной затяжки GPE4-8L и снять пластину BP79.01.030 в соответствии с рисунком 3.1;
 - ослабить гайки ВР79.07.108 (далее гайки) на штуцерах;
 - отсоединить трубки подачи реактивов от штуцеров;
- извлечь старые трубки и установить новую трубку $\emptyset_{\text{внут}}$ 2×1,5 16 мм в штуцер BP79.01.351 и 8 мм в штуцер BP79.07.108;
 - накинуть гайки на штуцера;
 - установить трубки подачи реактивов и затянуть гайки;
 - вернуть пластину ВР79.01.030 в исходное положение.

4 ТЕКУЩИЙ РЕМОНТ

4.1 Общие сведения

Текущий ремонт, а также гарантийный ремонт, осуществляются в OOO «B3OP».

Для этого следует подготовить анализатор, упаковать и отправить его предприятию-изготовителю для осуществления ремонта.

<u>Примечание</u> – В случае гарантийного ремонта с анализатором отправляется оригинал рекламации, в остальных случаях – заявка на проведение ремонта.

4.2 Подготовка анализатора

Для этого следует:

- а) слить реактивы из емкостей А...D (далее емкости) и промыть дистиллированной водой;
- б) заполнить емкости дистиллированной водой (не менее 200 см³) и произвести прокачку реактивов;
 - в) опорожнить емкости и произвести холостую прокачку реактивов;
- г) слить жидкость из емкости ГРАДУИРОВОЧНЫЙ РАСТВОР и промыть дистиллированной водой;
- д) заполнить емкость дистиллированной водой (не менее 200 см³) и произвести промывку анализатора;
- е) опорожнить емкость ГРАДУИРОВОЧНЫЙ РАСТВОР и произвести холостую промывку анализатора из канала «КО»;
 - ж)выключить анализатор;
- з) перекрыть подачу анализируемой среды к гидравлической системе анализатора;
- и) отсоединить источник питания ИП-1002 от сети переменного тока и анализатора;
- к) отсоединить внешние регистрирующие и сигнализирующие устройства от разъемов блока преобразовательного и (или) блока сигнализации, а также внутренние соединения;
- л) слить анализируемую среду из гидравлической системы анализатора, в том числе из проточной ячейки, в соответствии п. 3.3.3.3;

ВНИМАНИЕ: НЕ ДОПУСКАЕТСЯ сливать растворы реактивов в общую канализационную сеть! Слив разрешается только в специально подготовленную посуду с крышками.

м)промыть емкости А...D и ГРАДУИРОВОЧНЫЙ РАСТВОР дистиллированной водой и просушить;

- н) отсоединить гидравлические соединения, обеспечивающие подачу и слив анализируемой среды;
- о) отсоединить заземляющие проводники от клемм заземления « 🖨 » анализатора.

4.3 Упаковка анализатора

Для этого следует:

- уложить составные части анализатора в фанерный ящик с деревянным каркасом;
- уложить в отдельный герметичный полиэтиленовый пакет (рекомендуется использовать пакет с замком типа «Молния»):
 - а) паспорт ВР79.00.000ПС;
 - б) оригинал сопроводительного письма (акт рекламации);
- свободное пространство в фанерном ящике заполнить амортизационным материалом;
 - закрыть фанерный ящик крышкой;
- нанести транспортную маркировку и манипуляционные знаки «Хрупкое. Осторожно», «Беречь от влаги», «Верх», «Пределы температуры» по ГОСТ 14192-96.

5 ТРАНСПОРТИРОВАНИЕ

Транспортирование анализатора должно осуществляться в упаковке предприятия-изготовителя в условиях хранения 5 по ГОСТ 15150 при температуре от минус 20 до плюс 50 °C, по правилам и нормам, действующим на каждом виде транспорта.

6 ХРАНЕНИЕ

6.1 Условия хранения до ввода в эксплуатацию

Хранение анализаторов производится в упаковке предприятияизготовителя в условиях хранения 1 по ГОСТ 15150-69.

В помещениях для хранения не должно быть пыли, паров кислот и щелочи, агрессивных газов и других вредных примесей, вызывающих коррозию.

Место хранения должно быть чистым, прохладным, сухим, вентилируемым и защищенным от атмосферных осадков.

6.2 Условия хранения после эксплуатации

6.2.1 Подготовка к хранению на срок до 12 месяцев (кратковременный перерыв в работе)

Для этого следует:

- выполнить операции в соответствии с перечислениями а) и) п. 4.2;
- отключить питание анализатора от сети переменного тока;
- перекрыть подачу анализируемой среды к анализатору;
- слить оставшуюся жидкость из гидравлической системы анализатора,
 п. 3.3.3.
- 6.2.2 Подготовка к хранению на срок более 12 месяцев (длительный перерыв в работе)

Для этого следует:

- подготовить и упаковать анализатор в соответствии с пп. 4.2, 4.3;
- организовать хранение в соответствии с п. 6.1.

<u>Примечание</u> — Хранение анализатора производится без средств временной противокоррозионной защиты (ВЗ-0 по ГОСТ 9.014-78).

6.3 Ввод в эксплуатацию после хранения

6.3.1 Ввод в эксплуатацию после хранения в течение 12 месяцев

Осуществить подготовку к измерениям в соответствии с п. 2.3.

6.3.2 Ввод в эксплуатацию после хранения более 12 месяцев

Распаковать анализатор и подготовить к работе в соответствии с разделом 2.

Приложение А (обязательное)

СОГЛАСОВАНО

Главный метролог ФБУ «Нижегородский ЦСМ»

Т.Б. Змачинская

«10» декабря 2021 г.

Государственная система обеспечения единства измерений

АНАЛИЗАТОР КРЕМНИЯ МАРК-1202

Методика поверки

СОГЛАСОВАНО

Гл. комструктор ООО « ВЗОР»

А. К. Родионов

А.1 Общие сведения

- А.1.1 Настоящая методика распространяется на анализаторы кремния МАРК-1202 (далее анализатор) и устанавливает методы и средства первичной и периодической поверок анализатора. Поверка анализаторов должна проводится в соответствии с требованиями настоящей методики.
- А.1.2 При поверке обеспечивается прослеживаемость анализаторов к Государственному первичному эталону единицы массы ГЭТ 3-2020 согласно Приказу Федерального агентства по техническому регулированию и метрологии № 2818 от 29.12.2018 г.
 - А.1.3 Методика поверки реализуется посредством методов прямых измерений.
- А.1.4 Возможность проведения поверки для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений не предусмотрена.
 - А.1.5 Интервал между поверками два года.

А.2 Перечень операций поверки

При проведении поверки должны выполняться операции, указанные в таблице А.1.

Таблица А.1

Наименование операции	Номера пп.	Необх	одимость
	методики	проведения операции пр	
	поверки	первичной	периодической
		поверке	поверке
1 Внешний осмотр	A.7	Да	Да
2 Опробование	A.8	Да	Да
3 Проверка программного обеспечения	A.9	Да	Да
4 Определение основной абсолютной погрешности при измерении SiO ₂	A.10.1	Да	Да
5 Определение основной абсолютной погрешности при измерении температуры анализируемой среды	A.10.2	Да	Да
6 Определение основной приведенной погрешно-	A.10.3	Да	Нет
сти преобразования измеренного значения SiO ₂ в			
выходной ток анализатора			

А.3 Требования к условиям проведения поверки

Поверка должна проводиться в следующих условиях:

А.4 Требования к специалистам, осуществляющим поверку

К выполнению поверки допускаются лица, прошедшие специальное обучение в качестве поверителя и ознакомившиеся с настоящей методикой поверки и руководством по эксплуатации.

А.5 Метрологические и технические требования к средствам поверки

При проведении поверки применяют средства поверки и вспомогательное оборудование, указанные в таблице А.2.

Таблица А.2

1 аолица А.2	,				
Номер	Наименование и тип основного или вспомогательного средства				
пункта	поверки; обозначение нормативного документа, регламентирующего тех-				
методики	нические требования и (или) метрологические и основные				
поверки	поверки технические характеристики средства поверки				
A.7-A.10	А.7-А.10 Гигрометр психрометрический типа ВИТ-1 (рег. № 42453-09).				
	Диапазон измерения относительной влажности воздуха				
	от 20 до 90 %. Абсолютная погрешность измерения ± 7 %.				
A.7-A.10	Барометр-анероид БАММ-1 (рег. № 5738-76).				
	Диапазон измеряемого давления от 80 до 106 кПа.				
	Предел допускаемой основной абсолютной погрешности ± 0.2 кПа				
A.7-A.10	Мультиметр цифровой АРРА-505 (рег. № 49266-12).				
	Используемый предел измерения переменного напряжения 100 В;				
	основная абсолютная погрешность измерения, В:				
	$\pm (0.004X + 0.005),$				
	где Х – измеренное, значение переменного напряжения, В.				
	Используемый предел измерения силы постоянного тока 100 мА;				
	основная абсолютная погрешность измерения, мА:				
	$\pm (0.001X + 0.004),$				
	где Х – измеренное значение силы постоянного тока, мА				
A.8	Секундомер механический СОСпр-2б-2-010 (рег. № 83109-21).				
	Емкость шкалы: 60 с; 60 мин; класс точности – второй				
A.10.1	ГСО 9729-2010 состава раствора ионов кремния (КР-1).				
	Интервал допускаемых аттестованных значений массовой концентрации				
	ионов кремния от 0.95 до 1.05 включ г/дм ³ .				
	Относительная погрешность 1 %.				
A.10.1	Весы лабораторные электронные В153 (рег. № 26936-04).				
	Диапазон взвешивания от 0,02 до 150 г.				
	Погрешность взвешивания не более \pm 6 мг на диапазоне от 0,02 до 50 г				
A.10.1	Весы лабораторные электронные В1502 (рег. № 26936-04).				
	Диапазон взвешивания от 0,5 до 1500 г.				
	Погрешность взвешивания не более ± 60 мг				
A.10.2	Термометр лабораторный электронный ЛТ-300 (рег. № 61806-15).				
	Диапазон измерения от минус 50 °C до плюс 300 °C.				
	Погрешность измерения ± 0,05 °C				
	F F F F F F F F F F				

Продолжение таблицы А.2

прооблистист	прооолжение таолицы 11.2				
Номер	Наименование и тип основного или вспомогательного средства				
пункта	поверки; обозначение нормативного документа, регламентирующего тех-				
методики	нические требования и (или) метрологические и основные				
поверки	технические характеристики средства поверки				
A.10.2	Термостат жидкостный ТЖ-ТС-01/26 (рег. № 20444-02)				
	Диапазон регулирования температуры от 10 до 100 °C.				
	Погрешность поддержания температуры не более ± 0,1 °C.				
A.8	Ротаметр РМ-А 0,063 ГУ3-2 (рег. № 67050-17).				
	Верхний предел измерения по воде $0,1 \text{ м}^3/\text{ч}$				
А.8, А.10.1 Стакан H-1-5000 ТС ГОСТ 23932-90, вместимость 5 дм ³					
А.10.1 Колба мерная полиэтиленовая (полипропиленовая), вместимость 10					
А.10.1 Дозатор пипеточный одноканальный полиэтиленовый (полипропивместимостью 5 и 10 см ³					
A.10.1	Вода очищенная ОСТ34-70-953.2-88				
А.8, А.10 Вода дистиллированная ГОСТ Р 58144-2018					
А.10.1 Мешалка магнитная ММ-5 ТУ 25-11-834-80					
A.8	Насос для подачи воды. Максимальное рабочее давление не менее 0,02 МПа. Подача с регулировкой от 6 до 30 дм ³ /ч				
А.8 Зажим Гофмана винтовой для резиновых трубок; проходное сечение 10					

Примечания

- 1 Прослеживаемость аттестованных значений ГСО 9729-2010 к единицам массы (кг) в соответствии с ПГС ГОСТ 8.021-2015 достигается путем поверки используемых средств измерений.
- 2 Использование весов лабораторных серии «В» в качестве рабочего эталона по ПГС ГОСТ 8.021-2015 (часть 5) обеспечивает прослеживаемость анализаторов к Государственному первичному эталону массы ГЭТ 3-2020.
- 3 Использование термометра лабораторного электронного ЛТ-300 в качестве рабочего эталона 3 разряда по ПГС ГОСТ 8.558-2009 (часть 2) обеспечивает прослеживаемость анализаторов к Государственному первичному эталону единицы температуры ГЭТ 35-2021.
- 4 Средства измерений, применяемые для поверки, должны быть поверены, испытательное оборудование аттестовано.
- 5 Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик с необходимой точностью.
- $6~\rm Для~$ измерений температуры допускается применение других средств измерений с погрешностью измерений не хуже $\pm~0.1~\rm ^{\circ}C.$

А.6 Требования (условия) по обеспечению безопасности при проведении поверки

- А.б.1 При проведении поверки соблюдают требования техники безопасности:
- при работе с химическими реактивами − по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75;
- при работе с электроустановками − по ГОСТ Р 12.1.019-2017 и ГОСТ 12.2.007.0-75.

- A.6.2 Помещение, в котором осуществляется поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.
- А.6.3 Исполнители должны быть проинструктированы о мерах безопасности в соответствии с инструкциями, прилагаемыми к вспомогательным приборам и оборудованию, которые используются при проведении поверки.

А.7 Внешний осмотр

- А.7.1 При внешнем осмотре устанавливают:
- отсутствие механических повреждений, препятствующих нормальному функционированию анализатора (визуальный контроль целостности корпуса, экрана индикатора, соединительных трубок, соединительных кабелей);
 - чистоту и целостность соединителей и разъемов;
 - состояние лакокрасочных покрытий, правильность и четкость маркировки;
- наличие заводских номеров в зависимости от комплектации: на панели модуля измерительного и панели переключения пробы; на крышке корпуса блока преобразовательного под декоративной накладкой, закрывающей винты крепления; на крышке корпуса блока сигнализации;
- соблюдение требований по защите анализатора от несанкционированного вмешательства контролируют проверкой целостности пломб в зависимости от комплектации: на разъемах программирования блока преобразовательного, блока управления клапанами и блока сигнализации; на боковой поверхности блока подачи реактивов согласно описанию типа.
- А.7.2 Анализаторы, имеющие дефекты, перечисленные выше, а также иные дефекты, затрудняющие безопасную эксплуатацию или влияющие на результаты поверки, к дальнейшей поверке допускают только после устранения выявленных дефектов и повреждений.

А.8 Подготовка к поверке и опробование анализатора

А.8.1 Подготовка к поверке

- А.8.1.1 Анализатор подготавливают к работе в соответствии с п. 2.3 руководства по эксплуатации ВР79.00.000РЭ.
- A.8.1.2 Пределы программируемого диапазона измерений SiO_2 по токовому выходу и значения пределов уставок устанавливают в соответствии с таблицей A.3.

Таблица А.3

Режим	Пределы программируемого диапазона измерений		Значение уставки	
измерений	минимум	максимум	минимум	максимум
SiO ₂ , мкг/дм ³	0	5000	0	5000

- А.8.1.3 Основное и вспомогательное оборудование, указанное в разделе А.5, подготавливают к работе в соответствии с требованиями нормативных и эксплуатационных документов.
- А.8.1.4 Подготавливают контрольные растворы в соответствии с приложением Б руководства по эксплуатации ВР79.00.000РЭ.

А.8.2 Опробование

А.8.2.1 Подготовка к опробованию

Собирают установку в соответствии с рисунком, указанным в таблице А.4.

Таблица А.4

Исполнение анализатора МАРК-1202-	Схема установки	Исполнение анализатора МАРК-1202-	Схема установки
K-010	Рисунок А.1а	К-ПХС	Рисунок А.2а
Н-010, Щ-010	Рисунок А.1б	Н-ПХС, Щ-ПХС	Рисунок А.2б

А.8.2.2 Проведение опробования

Включают анализатор.

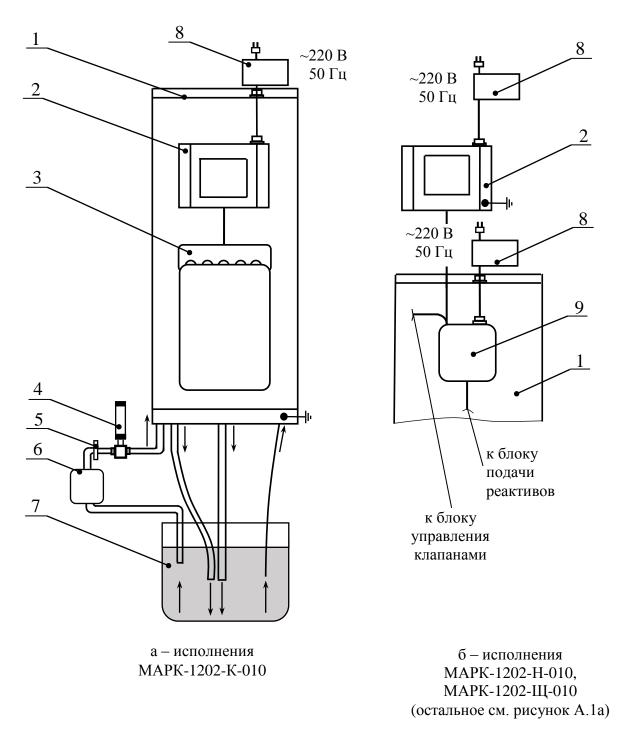
Переходят в режим «ПРОМЫВКА» и назначают канал для промывки «КО».

Запускают промывку, нажатием клавиши «ПУСК».

По окончании промывки фиксируют наличие капель и течи в гидравлических соединениях анализатора.

Подают насосом опрессовочным дистиллированную воду на канал «К1» и устанавливают с помощью ротаметра и зажима расход дистиллированной воды от 6 до 30 дм³/ч.

Переходят в режим «ПРОМЫВКА» и назначают канал для промывки «К1».


Запускают промывку, нажатием клавиши «ПУСК».

По окончании промывки фиксируют наличие капель и течи в гидравлических соединениях анализатора.

<u>Примечание</u> – Для анализаторов исполнений МАРК-1202-X-ПХС проводят аналогичную проверку для каждого канала, входящего в состав анализатора, предварительно обеспечив подачу дистиллированной воды на соответствующий канал с помощью насоса опрессовочного.

А.8.2.3 Результат операции опробования считают удовлетворительным, если:

- отсутствуют капли либо течи в местах гидравлических соединений анализатора;
- отсутствует индикация ошибок на дисплее анализатора, связанных с подачей пробы;
- осуществляется управление анализатором с помощью нажатия клавиш на экране.

— модуль измерительный; 2 — блок преобразовательный; 3 — блок подачи реактивов; 4 — ротаметр; 5 — зажим; 6 — насос; 7 — емкость с дистиллированной водой; 8 — источник питания ИП-1002; 9 — кросс-блок

Рисунок А.1

а – исполнения МАРК-1202-К-ПХС

б – исполнения МАРК-1202-Н-ПХС, МАРК-1202-Щ-ПХС (остальное см. рисунок А.2a)

1 – блок преобразовательный; 2 – панель переключения пробы; 3 – блок сигнализации; 4 – блок подачи реактивов; 5 – блок управления клапанами; 6 – клапан игольчатый (от 2 до 6 шт.); 7 – ротаметр; 8 – зажим; 9 – модуль измерительный; 10 – насос; 11 – источник питания ИП-1002; 12 – емкость с дистиллированной водой; 13 – кросс-блок

Рисунок А.2

А.9 Проверка программного обеспечения

Проверяют соответствие программного обеспечения (ПО) тому, которое было зафиксировано при испытаниях в целях утверждения типа анализатора.

Для этого включают анализатор и переходят в меню «ИНФОРМАЦИЯ».

Проверяют соответствие идентификационного обозначения ПО, номера версии и цифрового идентификатора ПО (контрольной суммы исполняемого кода) указанным в описании типа

Результат проверки считают удовлетворительным, если значения идентификационных данных ПО анализатора соответствуют таблице А.5.

Таблииа А.5

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	
Блок преобразовательный:	
– модуль SIG-1	BP79-9002
– плата индикации	BP79-9008
Блок подачи реактивов:	
– модуль ОРТ-1	BP79-9001
– модуль DIO-4	BP79-9003
– плата управления	BP79-9005
Блок сигнализации:	
– плата сигнализации	BP79-9006
Блок управления клапанами:	
– плата управления	BP79-9007
Номер версии (идентификационный номер) ПО	01
Цифровой идентификатор ПО	
Блок преобразовательный:	
– модуль SIG-1	0x33050491
– плата индикации	0x511C2141
Блок подачи реактивов:	
– модуль ОРТ-1	0xED3571B8
– модуль DIO-4	0x6D2D6EB2
– плата управления	0x4410FA45
Блок сигнализации:	
– плата сигнализации	0x1F47943F
Блок управления клапанами:	
– плата управления	0x2570626D

А.10 Определение метрологических характеристик

А.10.1 Определение основной абсолютной погрешности при измерении SiO₂

А.10.1.1 Подготовка к измерениям

Подготавливают контрольные растворы методом разбавления ГСО 9729-2010 дистиллированной водой, используя только полиэтиленовую (полипропиленовую) посуду, тщательно промытую дистиллированной водой.

Для приготовления раствора A с массовой концентрацией кремния в пересчете на SiO_2 , равной 10697 мкг/дм³:

- устанавливают колбу вместимостью 1000 см³ на весы B1502 и обнуляют показания весов;
- переносят колбу на весы В153 и обнуляют показания весов;
- добавляют в колбу аликвоту ГСО массой $m_{\Gamma CO}$, г, рассчитанной по формуле:

$$m_{\Gamma CO} = \frac{10,697}{C_{Si} \cdot 2,139},\tag{A.1}$$

где C_{Si} – аттестованное значение массовой концентрации ионов кремния в ГСО, г/дм³;

- переносят колбу на весы B1502 и добавляют очищенную воду до массы, равной $1000\ {\rm r};$
 - раствор тщательно перемешивают.

Перечень контрольных растворов приведен в таблице А.б.

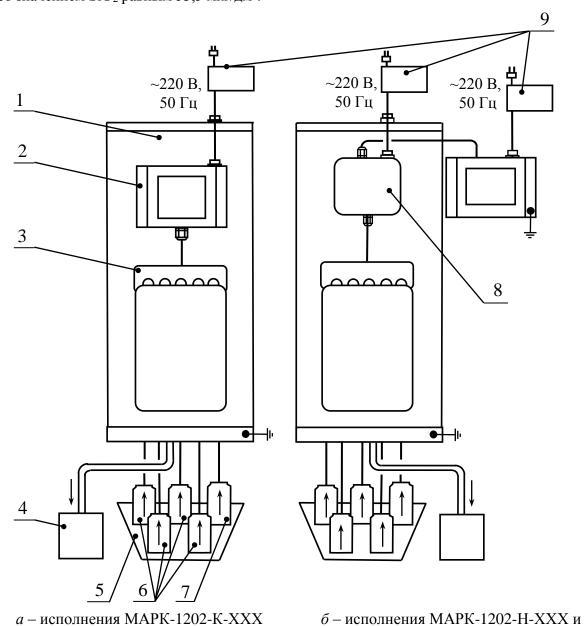
Таблица А.6

Масса раствора А	Macca	Массовая концентрация компонента в контрольном		
$m_A,~\Gamma$	ГОТОВОГО	растворе SiO_2 , мкг/дм ³		
	раствора m , г	Si В пересчете на SiO ₂		
5	1000	25	53,5	
25	1000	125	267	
40	1000	200	428	
50	500	500	1069	
250	1000	1250	2674	
200	500	2000	4278	

Для приготовления контрольного раствора с массовой концентрацией кремния в пересчете на SiO_2 менее 1069 мкг/дм³ включительно:

- устанавливают колбу вместимостью 1000 см³ на весы B1502 и обнуляют показания весов;
- переносят колбу на весы В153 и обнуляют показания весов;
- добавляют в колбу аликвоту раствора A массой m_A , г, в соответствии с таблицей A.6;
- переносят колбу на весы B1502 и добавляют в колбу очищенную воду до массы m, Γ , в соответствии с таблицей A.6;
 - раствор тщательно перемешивают.

Для приготовления контрольного раствора с массовой концентрацией кремния в пересчете на SiO_2 более 1069 мкг/дм³:


- устанавливают колбу вместимостью 1000 см³ на весы B1502 и обнуляют показания весов;
- добавляют в колбу аликвоту раствора A массой m_A , Γ , в соответствии с таблицей A.6;
- добавляют в колбу очищенную воду до массы т, г, в соответствии с таблицей А.6;
- раствор тщательно перемешивают.

<u>Примечание</u> – Контрольные растворы не подлежат длительному хранению. Рекомендуется использовать в день приготовления.

Собирают установку в соответствии:

- с рисунком A.3*a* для анализатора исполнений MAPK-1202-K-XXX;
- с рисунком А.3 δ для анализатора исполнений МАРК-1202-H-XXX, МАРК-1202-IЦ-XXX.

Помещают трубку подачи градуировочного раствора в емкость с контрольным раствором со значением SiO_2 равным 53,5 мкг/дм³.

1- модуль измерительный; 2- блок преобразовательный; 3- блок подачи реактивов; 4- емкость для слива; 5- подставка; 6- емкость с реактивом; 7- емкость с контрольным раствором; 8- кросс-блок; 9- источник питания ИП-1002

МАРК-1202-Щ-ХХХ

Рисунок А.3

А.10.1.2 Выполнение измерений

Включают анализатор.

Переходят в режим «ЭКСПРЕСС ИЗМЕРЕНИЕ» и выбирают канал пробы для измерения «К0».

Запускают измерение, нажатием клавиши «ПУСК».

По окончании цикла измерения фиксируют показания анализатора по SiO_2 C, мкг/дм³.

Аналогичные измерения производят для всех контрольных растворов (267; 428; 1069; 2674; 4278 мкг/дм³) последовательно от меньшего значения SiO₂ к большему.

А.10.2 Определение основной абсолютной погрешности при измерении температуры анализируемой среды

А.10.2.1 Подготовка к измерениям

Собирают установку в соответствии с рисунком А.4.

Снимают пластину с модуля измерительного для доступа к ячейке проточной. Извлекают из ячейки проточной датчик температуры.

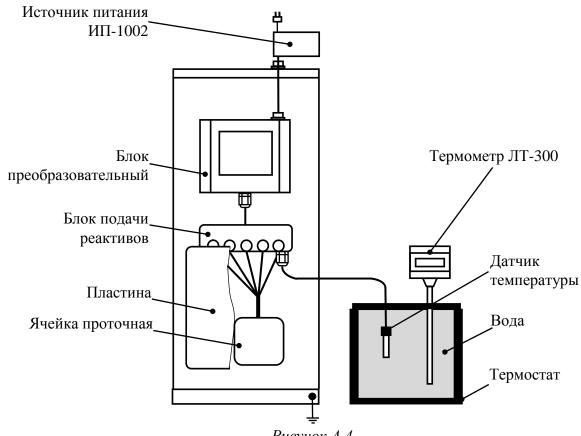


Рисунок А.4

Подготавливают термостат с водой.

В термостат погружают полностью датчик температуры и устанавливают термометр ЛТ-300.

С помощью термостата доводят температуру воды до значения (25 ± 3) °С и поддерживают ее с отклонением от установившегося значения ± 0.2 °C.

Включают анализатор.

Переходят в режим «ГРАДУИРОВКА», вводят пользовательский пароль (по-умолчанию, «123») и выбирают подменю «ТЕМПЕРАТУРА».

А.10.2.2 Выполнение измерений

После установления теплового равновесия в термостате фиксируют показания анализатора по температуре t, °C, и показания термометра ЛТ-300 t_2 , °C.

Аналогичные измерения производят для температуры воды равной (5,0+0,5) °C и (50,0-0,5) °C.

А.10.3 Определение основной приведенной погрешности преобразования измеренного значения SiO2 в выходной ток анализатора

А.10.3.1 Подготовка к измерениям

Выключают анализатор.

Собирают установку в соответствии:

- с рисунком А.5а для анализатора исполнений МАРК-1202-X-010;
- с рисунком А.5б для анализатора исполнений МАРК-1202-Х-ПХС.

Для этого:

- 1) для исполнений МАРК-1202-X-010:
- снимают крышку блока преобразовательного, вывернув винты крепления крышки, расположенные под декоративными накладками;
 - вводят кабель через кабельный ввод в блок преобразовательный;
- закрепляют кабель в разъеме «X6» в позиции токового выхода «+ i −» в соответствии с приложением Д руководства по эксплуатации BP79.00.000PЭ;
 - крышку возвращают в исходное положение;
 - 2) для исполнений МАРК-1202-Х-ПХС:
 - снимают крышку блока сигнализации, вывернув винты крепления крышки;
 - вводят кабель через кабельный ввод в блок сигнализации;
- закрепляют кабель в разъеме «X4» в позиции токового выхода «+ i →» в соответствии с приложением Д руководства по эксплуатации BP79.00.000PЭ;
 - крышку возвращают в исходное положение.

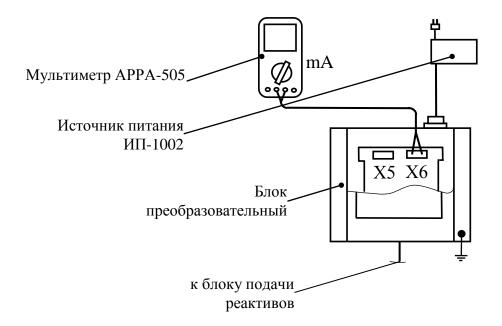
Подключают кабель к мультиметру АРРА-505.

Включают мультиметр АРРА-505 в режиме измерения постоянного тока.

Включают анализатор.

Переходят в меню «НАСТРОЙКИ» и вводят пользовательский пароль.

Переходят в меню «ТОКОВЫЙ ВЫХОД» и выбирают канал пробы «К1».


Устанавливают «Диапазон тока, мА» – «4-20 мА».

Переходят в подменю «ПОВЕРКА» и выбирают канал пробы «К1».

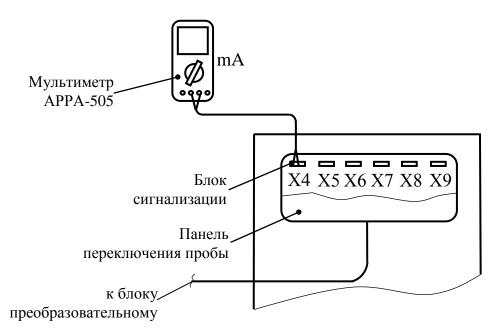

Устанавливают значение SiO_2 для начального участка в соответствии с таблицей A.6 и сохраняют в памяти анализатора нажатием кнопки «СОХРАНИТЬ».

Таблица А.6

Параметр Начальный участок поддиапазона (0-20 %)		Средний участок поддиапазона (45-55 %)	Конечный участок поддиапазона (80-100 %)	
SiO_2 , мкг/дм 3	500	2500	4500	

а – *исполнения МАРК-1202-X-010*

б – исполнения МАРК-1202-X-ПХС Рисунок А.5

А.10.3.2 Выполнение измерений

Фиксируют выходной ток I_{cblx}^{4-20} , мА.

Аналогично проводят измерения для всех значений, приведенных в таблице A.6, на диапазонах тока (4-20), (0-5) и (0-20) мA.

Выключают анализатор.

<u>Примечания</u>

- 1 Для анализатора исполнений MAPK-1202-X-ПХС проводят проверку каждого канала, входящего в состав анализатора, аналогичным образом.
- 2 Допускается проводить проверку токовых выходов одновременно с проверкой в соответствии с п. A.10.1.

А.11 Подтверждение соответствия анализатора метрологическим требованиям

А.11.1 Обработка результатов измерений

Обработку результатов измерений после выполнения каждой операции поверки про-изводят в соответствии с таблицей А.7.

Таблица А.7

Таблица А.7					
Номера пп. методики	Обработка результатов измерений				
А.10.1 Рассчитывают основную абсолютную погрешность анализатора мкг/дм ³ , для каждой точки поддиапазона по формуле					
	$\Delta_{\text{SiO}_2} = C - C_{\kappa.p.},\tag{A.1}$				
	где $C_{\kappa,p.}$ – действительное значение SiO ₂ контрольного раствора, мкг/дм ³				
A.10.2	Рассчитывают основную абсолютную погрешность анализатора при измерении температуры анализируемой среды Δ_t , °C, для каждой температурной точки по формуле				
	$\Delta_{t} = t - t_{9} \tag{A.2}$				
A.10.3	Рассчитывают для всех значений выходного тока $I_{\it bblx}^{4-20}$, $I_{\it bblx}^{0-5}$ и				
	I_{6blx}^{0-20} , мА, приведенную погрешность преобразования измеренного значения				
	SiO ₂ в выходной ток анализатора ξ , %, по формулам: — для выходного тока в диапазоне от 4 до 20 мА				
	$\xi = \frac{I_{6blx}^{4-20} - \left(4 + 16 \cdot \frac{C - C_{Ha4}}{C_{\partial uan}}\right)}{16} \cdot 100\%; \tag{A.3}$				
	– для выходного тока в диапазоне от 0 до 5 мА				
$\xi = \frac{I_{gblx}^{0-5} - 5 \cdot \frac{C - C_{hay}}{C_{\partial uan}}}{5} \cdot 100\%;$					
	$\xi = \frac{c_{ouan}}{5} \cdot 100\%; \tag{A.4}$				

Продолжение таблицы А.7

Номера пп. методики	Обработка результатов измерений
A.10.3	 – для выходного тока в диапазоне от 0 до 20 мА
	$\xi = \frac{I_{gblx}^{0-20} - 20 \cdot \frac{C - C_{haq}}{C_{\partial uan}}}{20} \cdot 100 \% , \tag{A.5}$ где C – значение SiO ₂ , установленное к подменю «ПОВЕРКА», мкг/дм ³ ; C_{haq} — наименьшее значение запрограммированного диапазона измерений SiO ₂ по токовому выходу, мкг/дм ³ ; $C_{\partial uan}$ — запрограммированный диапазона измерений SiO ₂ по токовому выходу, определяемый как разность между наибольшим и наименьшим значениями программируемого диапазона измерений, мкг/дм ³ .

А.11.2 Критерии принятия решения по подтверждению соответствия

- А.11.2.1 Результаты поверки считают положительными, если:
- 1) абсолютная погрешность анализатора находится в пределах:
 - а) при измерении SiO_2 , мкг/дм³:

 - на поддиапазоне св. 500 до 5000 мкг/дм 3 \pm 0,07C,
 - б) при измерении температуры анализируемой среды, ${}^{\circ}$ C ± 0.3 ;
- 2) приведенная погрешность преобразования измеренного значения SiO_2 в выходной ток анализатора находится в пределах, % от диапазона по токовому выходу \pm 0,5.
- А.11.2.2 При получении отрицательного результата после любой из операций поверка прекращается, анализатор бракуется.

А.12 Оформление результатов поверки

- А.12.1 Сведения о результатах поверки анализаторов передаются в Федеральный информационный фонд по обеспечению единства измерений.
- А.12.2 При положительных результатах поверки наносится знак поверки в соответствии с описанием типа и (или) по заявлению владельца средства измерений или лица, представившего его на поверку, выдается свидетельство о поверке средства измерений, оформленное в соответствии с действующими нормативно-правовыми документами, и (или) в паспорт вносится запись о проведенной поверке.
- А.12.3 При отрицательных результатах поверки по заявлению владельца средства измерений или лица, представившего его на поверку, выдается извещение о непригодности к применению средства измерений, оформленное в соответствии с действующими нормативно-правовыми документами.
 - А.12.4 Требования к оформлению протокола поверки не предъявляются.

ПРИЛОЖЕНИЕ Б

(справочное)

МЕТОДИКА ПРИГОТОВЛЕНИЯ КОНТРОЛЬНЫХ РАСТВОРОВ

Б.1 Средства измерений, вспомогательное оборудование и материалы, применяемые для приготовления контрольных растворов

Для приготовления контрольных растворов применяются:

- колбы мерные полипропиленовые вместимостью 1000 см³;
- дозатор пипеточный одноканальный полиэтиленовый (полипропиленовый) вместимостью 5 и $10~{\rm cm}^3$;
- государственный стандартный образец состава раствора ионов кремния Γ CO 9729-2010 или аналогичный с относительной погрешностью аттестованного значения не более 1 % (далее Γ CO);
 - вода очищенная ОСТ 34-70-953.2-88;
- весы лабораторные электронные B153 высокого (II) класса точности по Γ OCT P 53228-2008 (далее весы B153), погрешность взвешивания не более \pm 6 мг в интервале взвешивания от 0,02 до 50 включ. г;
- весы лабораторные электронные B1502 высокого (II) класса точности по ГОСТ Р 53228-2008 (далее весы B1502), погрешность взвешивания не более \pm 60 мг;
 - мешалка магнитная.

<u>Примечание</u> — Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных.

Б.2 Общие указания

При приготовлении контрольных растворов должна использоваться только полиэтиленовая (полипропиленовая) посуда. Вся посуда, используемая для приготовления, должна быть тщательно промыта дистиллированной водой и высушена.

Для приготовления контрольных растворов должна использоваться та же вода, что и для приготовления градуировочного раствора.

Каждый приготавливаемый раствор должен быть тщательно перемешан.

Б.3 Требования к условиям приготовления

При приготовлении контрольных растворов должны соблюдаться следующие требования:

- относительная влажность воздуха, %
 не более 80;
- атмосферное давление, кПаот 84 до 107,6.

Б.4 Приготовление контрольных растворов

Б.4.1 Контрольные растворы готовят путем последовательного разбавления раствора А очищенной водой.

<u>Примечание</u> – Приготовление контрольных растворов производится весовым методом, поскольку разница между массой и объемом приготовляемых растворов пренебрежимо мала и точность весового метода превосходит точность объемного.

- Б.4.2 Для приготовления раствора A с массовой концентрацией кремния в пересчете на SiO_2 , равной 10697 мкг/дм^3 :
- устанавливают колбу вместимостью 1000 см³ на весы В1502 и обнуляют показания весов;
 - переносят колбу на весы В153 и обнуляют показания весов;
 - добавляют в колбу аликвоту ГСО массой $m_{\Gamma CO}$, г, рассчитанной по формуле:

$$m_{\Gamma CO} = \frac{10,697}{C_{Si} \cdot 2,139},$$
 (Б.1)

где C_{Si} – аттестованное значение массовой концентрации ионов кремния в ГСО, г/дм³;

- переносят колбу на весы B1502 и добавляют очищенную воду до массы, равной $1000\ {\rm r};$
 - раствор тщательно перемешивают.
 - Б.4.3 Перечень контрольных растворов приведен в таблице Б.1.

Таблица Б.1

Масса раствора А	Масса готового	Массовая концентрация компонента в контрольном растворе SiO_2 , мкг/дм ³		
m_A , Γ	раствора <i>m</i> , г	Si	В пересчете на SiO ₂	
5	1000	25	53,5	
25	1000	125	267	
40	1000	200	428	
50	500	500	1069	
250	1000	1250	2674	
200	500	2000	4278	

- Б.4.4 Для приготовления контрольного раствора с массовой концентрацией кремния в пересчете на SiO_2 менее 1069 мкг/дм³ включительно:
 - устанавливают колбу вместимостью 1000 см³ на весы B1502 и обнуляют показания весов;
 - переносят колбу на весы В153 и обнуляют показания весов;
 - добавляют в колбу аликвоту раствора A массой m_A , г, в соответствии с таблицей Б.1;
- переносят колбу на весы B1502 и добавляют в колбу очищенную воду до массы m, Γ , в соответствии с таблицей Б.1;
 - раствор тщательно перемешивают.

- Б.4.5 Для приготовления контрольного раствора с массовой концентрацией кремния в пересчете на SiO_2 более $1069~\rm mkr/дm^3$:
- устанавливают колбу вместимостью $1000~{\rm cm}^3$ на весы ${\rm B}1502~{\rm u}$ обнуляют показания весов;
 - добавляют в колбу аликвоту раствора A массой m_A , Γ , в соответствии с таблицей Б.1;
 - добавляют в колбу очищенную воду до массы т, г, в соответствии с таблицей Б.1;
 - раствор тщательно перемешивают.

Б.5 Расчет метрологических характеристик контрольного раствора

Б.5.1 Расчет относительных погрешностей контрольных растворов (погрешностей аттестации) приведен в таблице Б.2.

Таблица Б.2

Массовая концентрация компонента SiO_2 , мкг/дм ³		Абсолютное значение, %			
в в исходном растворе		относительная погрешность ГСО либо исходного раствора	относительная погрешность весов B153	относительная погрешность весов B1502	суммарная относительная погрешность контрольного раствора
10697	_	1,000	0,120	0,006	1,126
53,5	10697	1,126	0,120	0,006	1,252
267	10697	1,126	0,024	0,006	1,156
428	10697	1,126	0,015	0,006	1,147
1069	10697	1,126	0,012	0,012	1,150
2674	10697	1,126	_	0,030	1,156
4278	10697	1,126	_	0,042	1,168

5.5.3 Наибольшее значение суммарной относительной погрешности контрольного раствора, приготовленного по данной методике, $\pm 1,252$ %.

Б.6 Срок хранения

Контрольные растворы не подлежат длительному хранению. Рекомендуется использовать в день приготовления.

Приложение В

(справочное)

МЕТОДИКА ПРИГОТОВЛЕНИЯ РЕАКТИВОВ

1 ВНИМАНИЕ: При работе с реактивами соблюдать правила техники безопасности по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75!

- 2 ВНИМАНИЕ: Перед началом работы внимательно изучить паспорта безопасности реактивов!
- 3 ВНИМАНИЕ: При работе используют средства индивидуальной защиты: халат, перчатки и очки!
 - 4 ВНИМАНИЕ: Приготовление реактивов осуществлять в вытяжном шкафу!

В.1 Средства измерений, вспомогательное оборудование и материалы, применяемые для приготовления реактивов

Для приготовления реактивов применяются:

- весы лабораторные электронные B1502 высокого (II) класса точности по ГОСТ P 53228-2008, погрешность взвешивания не более \pm 60 мг;
 - мензурка 100 ГОСТ 1770-74 100 cm³;
 - аммоний молибденовокислый 4-водный (молибдат аммония) по ГОСТ 3765-78, х.ч.;
 - серная кислота по ГОСТ 14262-78, ос.ч.;
 - щавелевая кислота 2-водная по ГОСТ 22180-76, х.ч.;
 - гидрооксид натрия по ГОСТ 4328-77, х.ч.;
 - аммоний-железо (II) сернокислый по ГОСТ 4208-72, х.ч.;
 - вода очищенная по ОСТ 34-70-953.2-88.

 $\underline{\textit{\Pi p u m e u a h u e}}$ — Допускается использование других типов средств измерений и материалов с характеристиками не хуже, чем у приведенных.

В.2 Общие указания

Для приготовления реактивов должна использоваться та же вода, что и для приготовления градуировочного раствора.

Следует подготавливать реактивы одним объемом.

В.3 Приготовление реактивов

Последовательность приготовления реактивов:

- снять с емкостей А...D крышки BP79.07.101, BP79.07.101-01...03 с установленными трубками для подачи реактивов;
 - извлечь емкости из подставки;
 - тщательно промыть емкости очищенной водой;
 - заполнить емкости на ³/₄ очищенной водой;
 - добавить в емкости исходные реактивы в соответствии с таблицей В.1;

Таблица В.1

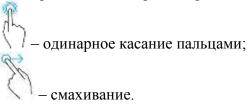
Дветовая маркировка		Реактив исходный	
трубки и емкости		Наименование	Количество
Желтая	A	1) Гидрооксид натрия	16 г
		2) Аммоний молибденовокислый 4-водный, ГОСТ 3765-78, х.ч.	56 г
Красная	В	Серная кислота, концентрат, ГОСТ 14262-78, ос.ч.	50 см ³
Зеленая	С	Щавелевая кислота 2-водная, ГОСТ 22180-76, х.ч.	40 г
Синяя	D	1) Серная кислота, концентрат, ГОСТ 14262-78, ос.ч.	20 см ³
		2) Аммоний-железо (II) сернокислый, ГОСТ 4208-72, х.ч.	26 г

- закрыть емкости крышками BP79.07.110, BP79.07.110-01...03 в соответствии с цветовой маркировкой и тщательно перемешать встряхиванием. В случае сухого реактива убедиться в растворении осадка;
 - долить очищенной воду до метки «2 литра» и повторно перемешать;
 - установить емкости в подставку;
- заменить крышки BP79.07.110, BP79.07.110-01...03 на крышки BP79.07.101, BP79.07.101-01...03 с установленными трубками для подачи реактивов в соответствии с цветовой маркировкой.

В.4 Срок хранения

Срок хранения реактивов в закрытой емкости не более 3 мес.

ПРИЛОЖЕНИЕ Г


(обязательное)

ЭКРАНЫ АНАЛИЗАТОРА

Г.1 Правила работы с сенсорным индикатором

ПРЕДОСТЕРЕЖЕНИЕ: Не касаться сенсорного индикатора ОСТРЫМИ ПРЕДМЕТАМИ!

Сенсорный индикатор поддерживает следующие жесты:

Г.2 Экранные элементы управления

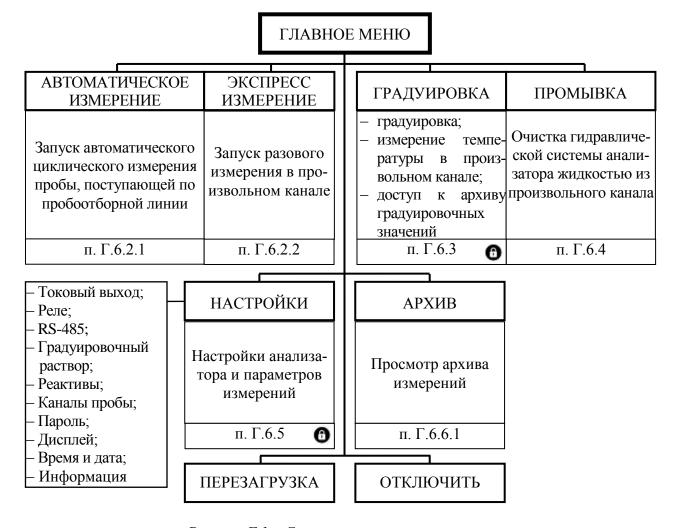

Назначение типовых экранных элементов управления (далее — элементов управления) — в соответствии с таблицей Г.1.

Таблица Г.1

Изображение элемента управления	Значение или функция	
O / O	Параметр выбран / не выбран	
	Параметр выбран / не выбран / недоступен для выбора	
K0 / K1 / K5	Канал пробы выбран / не выбран / недоступен для выбора	
пуск ▶	Запуск операции доступен / недоступен	
стоп	Остановка измерения	
COXPANITE COXPANITE	Сохранение значений доступно / недоступно	
SiO ₂ SiO ₂	Подменю выбрано / не выбрано	
12	Установка значения: при нажатии на число вызывается экранная клавиатура (п. Г.3)	
	Переход к архиву (п. Г.6.6)	

Г.3 Структура меню анализатора

Структура меню анализатора – в соответствии с рисунком Г.1.

Pисунок Γ . I — Cтруктура меню анализатора

<u>Примечание</u> – « $\mathbf{\Theta}$ » – доступ к меню ограничен паролем.

Г.4 Строка заголовка экранов

Строка заголовка экранов – в соответствии с рисунком Г.2.

- ${f 1}$ оповещение об ошибках, при нажатии переход к экрану «ОШИБКИ»;
- 2 оповещение о предупреждениях, при нажатии переход к экрану «ПРЕДУПРЕЖДЕНИЯ»;
- 3 название текущего меню;
- 4 текущее время и дата;
- 5 кнопка возврата в экран «ГЛАВНОЕ МЕНЮ»;
- 6 кнопка возврата в предыдущее меню.

Рисунок Г.2

Г.5 Экранная клавиатура

Экранная клавиатура предназначена для ввода значения и в зависимости от вводимого параметра имеет отличия в названии операции и поле комментариев.

Поле комментариев предназначено для отображения требований к вводимому значению.

Экранная клавиатура – в соответствии с рисунком Г.3.

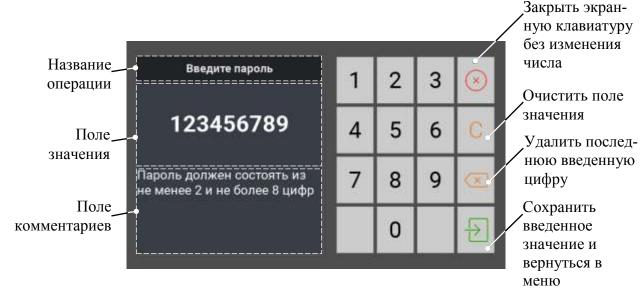


Рисунок Г.3 — Экранная клавиатура (на примере экранной клавиатуры для ввода пароля)

Г.6 Экраны

Г.6.1 Экран «ГЛАВНОЕ МЕНЮ»

Экран «ГЛАВНОЕ МЕНЮ» предназначен для перехода к экранам в соответствии со структурой меню анализатора и приведен на рисунке Г.4.

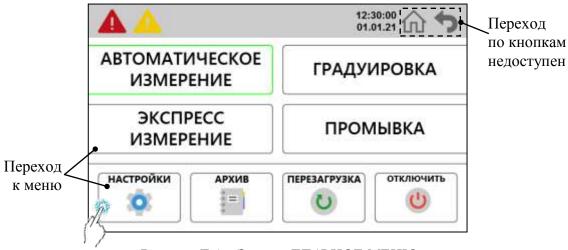


Рисунок Г.4 – Экран «ГЛАВНОЕ МЕНЮ»

Г.6.2 Экраны измерений

Г.6.2.1 Экраны меню «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ»

Экран «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» предназначен для отображения информации о циклическом измерении пробы и представлен на рисунке Γ .5 — для анализатора исполнений MAPK-1202-X-010 и на рисунке Γ .6 — для анализатора исполнений MAPK-1202-X-ПХС.

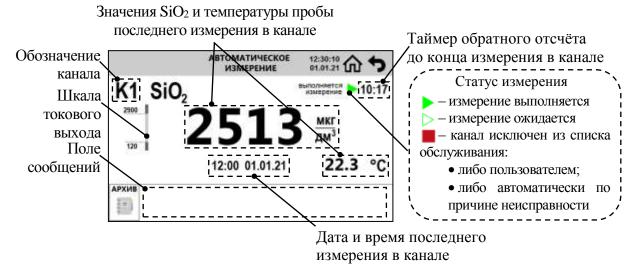


Рисунок Г.5 – Экран «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» для канала пробы

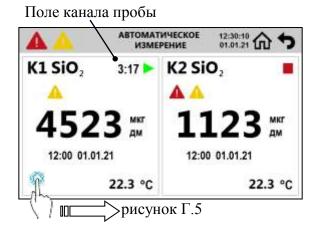


Рисунок Г.6 — Экран «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» общий для каналов пробы (на примере экрана для анализатора исполнений МАРК-1202-X-П2С)

<u>Примечание</u> – Здесь и далее на рисунках информация приведена условно в качестве примера.

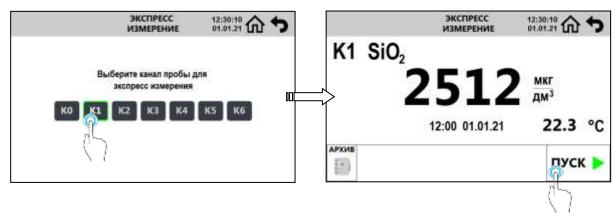
При касании поля канала пробы осуществляется переход в экран «АВТОМАТИЧЕ-СКОЕ ИЗМЕРЕНИЕ» для выбранного канала пробы в соответствии с рисунком Г.5.

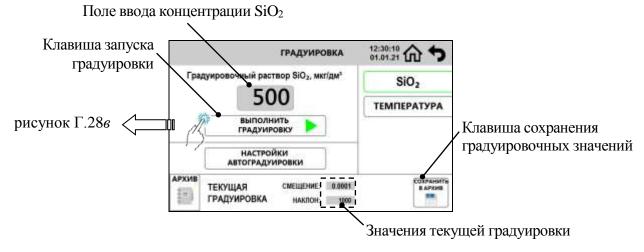
На экране измерений могут индицироваться дополнительные сообщения сигнализирующие об ошибках и предупреждениях в соответствии с п. 2.9.2.

Г.6.2.2 Экраны меню «ЭКСПРЕСС ИЗМЕРЕНИЕ»

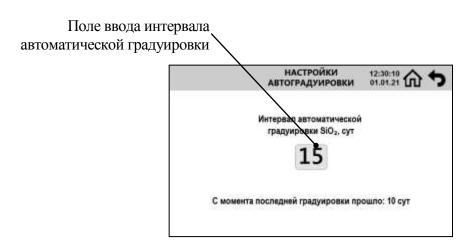
Экраны меню «ЭКСПРЕСС ИЗМЕРЕНИЕ» предназначены для управления разовым измерением пробы и отображения результатов.

Экраны меню «ЭКСПРЕСС ИЗМЕРЕНИЕ» – в соответствии с рисунком Γ .7. Индикация на экранах аналогична рисунку Γ .5.




Рисунок Г.7 – Экраны меню «ЭКСПРЕСС ИЗМЕРЕНИЕ»

Г.6.3 Экраны меню «ГРАДУИРОВКА»


Экраны меню «ГРАДУИРОВКА» предназначены для проведения градуировки анализатора по воде и градуировочному раствору, а также отображения текущего значения температуры анализируемой среды и переходу к архиву градуировочных значений.

Экраны меню «ГРАДУИРОВКА» – в соответствии с рисунком Г.8.

Клавиша запуска градуировки активируется после ввода концентрации SiO_2 , мкг/дм³, клавиша сохранения градуировочных значений – после градуировки по градуировочному раствору.

а – подменю «SiO2»

б – подменю «НАСТРОЙКИ АВТОГРАДУИРОВКИ»

в –подменю «ТЕМПЕРАТУРА»

Рисунок Г.8 – Экраны «ГРАДУИРОВКА»

Г.6.4 Экран «ПРОМЫВКА»

Экраны меню «ПРОМЫВКА» предназначены для очищения гидравлической системы анализатора.

Канал пробы для промывки и длительность промывки назначаются произвольно. Клавиша запуска промывки активируется после выбора канала пробы для промывки. Экраны меню «ПРОМЫВКА» – в соответствии с рисунком Г.9.



Рисунок Г.9 – Экраны «ПРОМЫВКА»

Г.6.5 Меню «НАСТРОЙКИ»

Г.6.5.1 Экран меню «НАСТРОЙКИ»

Экран «НАСТРОЙКИ» предназначен для перехода к настройкам анализатора и параметров измерений.

Экран «НАСТРОЙКИ» – в соответствии с рисунком Г.10.

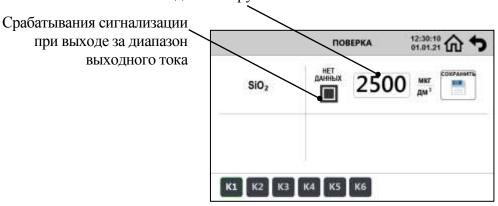
Рисунок Г.10 – Экран «НАСТРОЙКИ»

Троекратным касанием заголовка экрана «НАСТРОЙКИ» осуществляется переход к экрану «УПРАВЛЕНИЕ ПАМЯТЬЮ» (п. Г.6.10).

Г.6.5.2 Экраны меню «ТОКОВЫЙ ВЫХОД»

Экраны меню «ТОКОВЫЙ ВЫХОД» предназначены для просмотра и настройки параметров токовых выходов каждого канала пробы (экран «ТОКОВЫЙ ВЫХОД»), включения срабатывания сигнализации при выходе за диапазон выходного тока, а также для имитации значения SiO₂, передаваемого на токовые выходы (экран «ПОВЕРКА») при проведении поверки.

Экраны меню «ТОКОВЫЙ ВЫХОД» – в соответствии с рисунком Г.11.


Срабатывания сигнализации при выходе за диапазон выходного тока

а – Экран «ТОКОВЫЙ ВЫХОД»

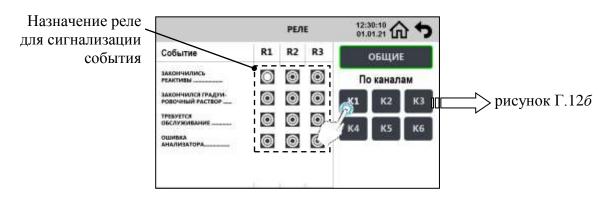
Рисунок Г.11 – Экраны меню «ТОКОВЫЙ ВЫХОД»

Поле ввода имитируемого значения SiO₂

б – Экран «ПОВЕРКА»

Рисунок Г.11 – Экраны меню «ТОКОВЫЙ ВЫХОД»

В меню «ТОКОВЫЙ ВЫХОД» можно настроить срабатывание сигнализации при выходе за диапазон выходного тока:


✓ – если нет данных об измерении, то на токовый выход подается значение 22,5 мA, и включается сигнализация;

— если нет данных об измерении, то на токовый выход подается значение 0 мA, сигнализация не включается.

Г.6.5.3 Экраны меню «РЕЛЕ»

Экраны меню «РЕЛЕ» предназначены для конфигурирования замыканий «сухих» контактов реле с событиями сигнализации и настройки уставок срабатывания сигнализации.

В меню «РЕЛЕ» можно настроить общую сигнализацию для анализатора в соответствии с рисунком $\Gamma.12a$ в подменю «ОБЩИЕ» и сигнализацию для каждого канала в соответствии с рисунком $\Gamma.12\delta$ в подменю «К1»...«К6».

а –подменю «ОБЩИЕ»

Рисунок Г.12 – Экраны меню «РЕЛЕ»

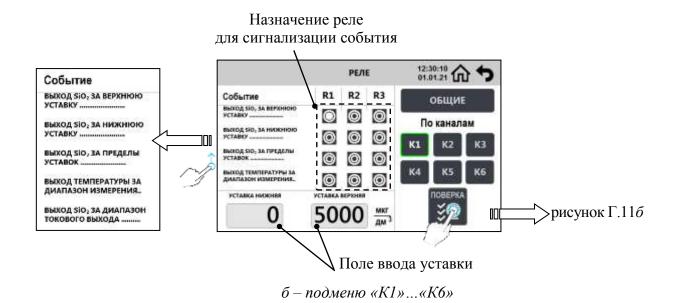


Рисунок Г.12 – Экраны меню «РЕЛЕ»

Г.6.5.4 Экран «RS-485»

Экран «RS-485» предназначен для настройки интерфейса RS-485 и протокола обмена с ПК и приведен на рисунке Γ .13.

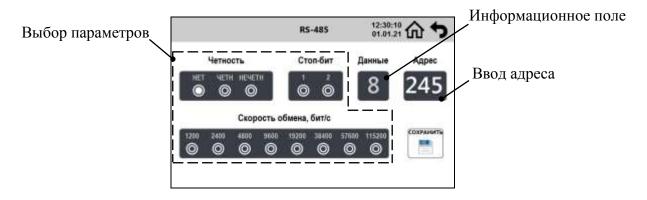


Рисунок Γ .13 – Экран меню «RS-485»

В меню «RS-485» можно установить значения:

- «Адрес» от «001» до «247»;
- «Скорость обмена, бит/с» от «1200» до «115200»;
- «Четность» «НЕТ», «ЧЕТН» или «НЕЧЕТ»;
- «Стоп-бит» «1» или «2».

Г.6.5.5 Экран «ГРАДУИРОВОЧНЫЙ РАСТВОР»

Экран «ГРАДУИРОВОЧНЫЙ РАСТВОР» предназначен для ввода значений текущего объема градуировочного раствора, см 3 , и его концентрации SiO $_2$, мкг/дм 3 , необходимых для проведения автоматической градуировки.

Экран «ГРАДУИРОВОЧНЫЙ РАСТВОР» – в соответствии с рисунком Г.14.

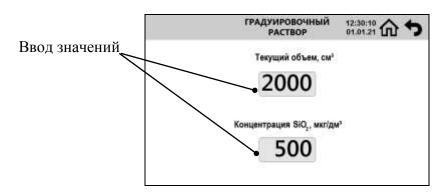


Рисунок Г.14 – Экран «ГРАДУИРОВОЧНЫЙ РАСТВОР»

Г.6.5.6 Экран «РЕАКТИВЫ»

Экран «РЕАКТИВЫ» предназначен для ввода значения текущего объема реактивов и запуска прокачки реактивов и приведен на рисунке Г.15.

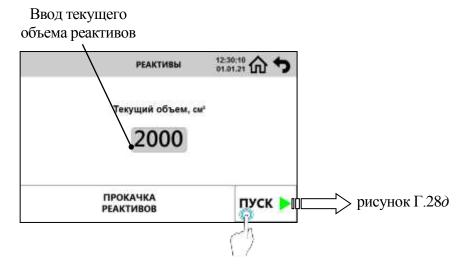


Рисунок Г.15 – Экран «РЕАКТИВЫ»

Г.6.5.7 Экран «КАНАЛЫ ПРОБЫ»

Экран «КАНАЛЫ ПРОБЫ» предназначен для настройки режима «АВТОМАТИЧЕСКОЕ ИЗМЕРЕНИЕ» – выбора измеряемых каналов из числа подключенных и установки интервала между измерениями.

Экран «КАНАЛЫ ПРОБЫ» – в соответствии с рисунком Г.16.

Рисунок Г.16 – Экран «КАНАЛЫ ПРОБЫ»

Если выбран интервал между измерениями 0 ч, то циклы измерений в каналах происходят непрерывно.

Если выбрана другая цифра, то циклы измерений происходят с шагом, равным выбранному значению, отсчитываемому от 0 + 00 мин.

Г.6.5.8 Экран «ПАРОЛЬ»

Экран «ПАРОЛЬ» предназначен для изменения пароля и сброса доступа к меню «НАСТРОЙКИ» и «ГРАДУИРОВКА» и приведен на рисунке Г.17.

Клавиша « моступа кменю » позволяет ограничить ранее открытый доступ в экране «АВТОРИЗАЦИЯ», не прибегая к выключению анализатора.

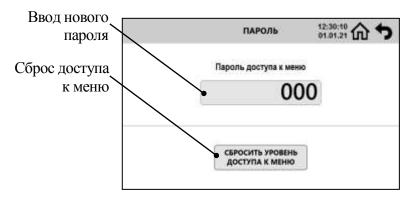


Рисунок Г.17 – Экран «ПАРОЛЬ»

Г.6.5.9 Экран «ДИСПЛЕЙ»

Экран «ДИСПЛЕЙ» предназначен для настройки яркости дисплея и приведен на рисунке $\Gamma.18$.

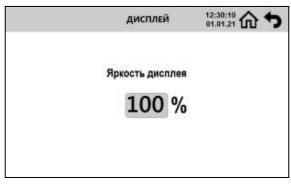
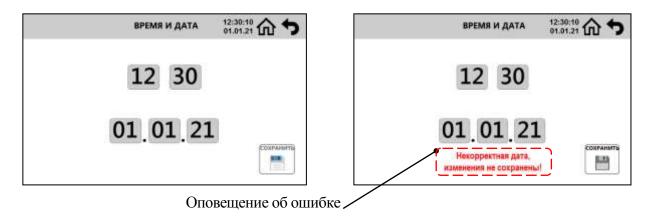
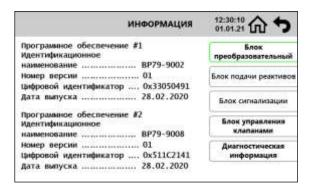
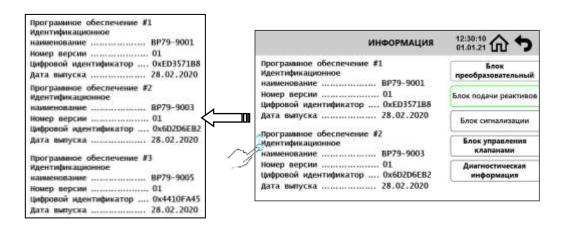


Рисунок Г.18 – Экран «ДИСПЛЕЙ»

Г.6.5.10 Экраны «ВРЕМЯ И ДАТА»

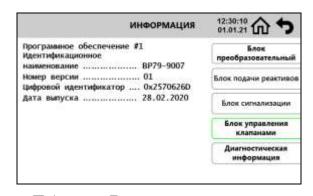
Экран «ВРЕМЯ И ДАТА» предназначен для установки времени и даты и приведен на рисунке Γ .19.


Рисунок Г.19 – Экраны «ВРЕМЯ И ДАТА»

Г.6.5.11 Экраны меню «ИНФОРМАЦИЯ»

Экраны меню «ИНФОРМАЦИЯ» предназначены для отображения идентификационных данных ПО анализатора – в соответствии с рисунком Γ .20, и диагностической информации – в соответствии с рисунком Γ .21.



а – Подменю «Блок преобразовательный»

б – Подменю «Блок подачи реактивов»

в – Подменю «Блок сигнализации»

г – Подменю «Блок управления клапанами»

Рисунок Г.20 — Экран «ИНФОРМАЦИЯ» — отображение идентификационных данных ПО анализатора

Рисунок Г.21 – Экран «ИНФОРМАЦИЯ», подменю «ДИАГНОСТИЧЕСКАЯ ИНФОРМАЦИЯ»

Г.6.6 Экраны меню «АРХИВ»

 Γ .6.6.1 Экран «АРХИВ» предназначен для хранения и отображения результатов измерения и приведен на рисунке Γ .22.

	AF	ХИВ		12:30: 01.01	10 公	+
Время и дата	SiO ₂ , MK		Температура, °С			
08:12 01.10.21	1234		25,0			
ко	Kı	K2	КЗ	K4	К5	K6

Рисунок Г.22 – Экран «АРХИВ»

 Γ .6.6.2 Экран «АРХИВ SIO₂» предназначен для хранения градуировочных значений и приведен на рисунке Γ .23.

	АРХИЕ	12:30:10 合 勺		
Время и дата	смещение	наклон	Тип градуировки	
10:12 01.10.21	0.0023	1096	заводская	
12:12 01.10.21	0.0019	1080	пользовательская	
14:12 01.10.21	0.0027	1237	пользовательская	
16:12 01.10.21	0.0012 1214		пользовательская	
		WC	ЛОЛЬЗОВАТЬ ВЫБРАННУЮ ГРАДУИРОВКУ	

Рисунок $\Gamma.23$ – Экран «АРХИВ SiO_2 »

Г.6.7 Экран «ОШИБКИ»

Экран «ОШИБКИ предназначен для отображения ошибок в работе анализатора и приведен на рисунке Γ .24.

После устранения причины ошибки информация о ней автоматически удаляется с экрана.

Рисунок Г.24 – Экран «ОШИБКИ»

Г.6.8 Экран «ПРЕДУПРЕЖДЕНИЯ»

Экран «ПРЕДУПРЕЖДЕНИЯ» предназначен для отображения предупреждений в работе анализатора и приведен на рисунке Г.25.

После устранения причины предупреждения информация о нем автоматически удаляется с экрана.

время и дата	предупреждения	4
08:12 01.10.21	Градуировочный раствор закончился	
08:32 01.10.21	Ошибка градуировки	
10:12 02.10.21	Градуировка термодатчика не удалась	
15:39 01.11.21	Умеренное загрязнение ячейки	
10:12 15.11.21	Требуется градуировка	
11:05 01.12.21	Реактивы заканчиваются	
09:31 21.12.21		

Рисунок Г.25 – Экран «ПРЕДУПРЕЖДЕНИЯ»

Г.6.9 Экран «АВТОРИЗИЦИЯ»

Экран «АВТОРИЗИЦИЯ» предназначен для открытия доступа к экранам «ГРАДУИ-РОВКА» и «НАСТРОЙКИ» и представлен на рисунке Г.26.

Рисунок Г.26 – Экран «АВТОРИЗАЦИЯ»

Г.6.10 Экран «УПРАВЛЕНИЕ ПАМЯТЬЮ»

Экран «УПРАВЛЕНИЕ ПАМЯТЬЮ» предназначен для возврата к заводским настройкам в соответствии с таблицей 2.12, установления заводских градуировочных значений и очищения архива измерений.

Доступ к экрану «УПРАВЛЕНИЕ ПАМЯТЬЮ» осуществляется троекратным касанием заговка в экране «НАСТРОЙКИ» (рисунок Г.10).

Экран «УПРАВЛЕНИЕ ПАМЯТЬЮ» – в соответствии с рисунком Г.27.



Рисунок Г.27 — Экран «УПРАВЛЕНИЕ ПАМЯТЬЮ»

Г.6.11 Экраны уведомлений

Экраны уведомлений предназначены для отображения информации о текущей операции и представлены на рисунке Г.28.

а – Экран «ОСТАНОВКА ИЗМЕРЕНИЯ»

б – Экран «СООБЩЕНИЕ»

Рисунок Γ .28 — Экраны уведомлений (лист 1 из 2)

в – Экран уведомления о выполнении градуировки

д – Экран уведомления о выполнении прокачки реактивов

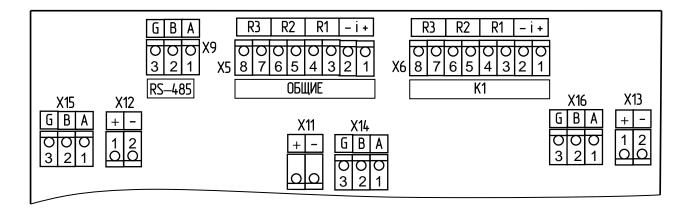
завершения.

г – Экран уведомления о выполнении промывки

е – Экран «ОСТАНОВКА»

РАБОТА ЗАВЕРШЕНА, ПИТАНИЕ АНАЛИЗАТОРА МОЖНО ОТКЛЮЧИТЬ

ж – Экран уведомления о завершении работы


Рисунок Γ .28 – Экраны уведомлений (лист 2 из 2)

приложение д

(справочное)

СХЕМА РАСПОЛОЖЕНИЯ РАЗЪЕМОВ

Схемы расположения разъемов – в соответствии с рисунками Д.1-Д.4.

Pисунок Д.1 – Cхема расположения разъемов на плате блока преобразовательного

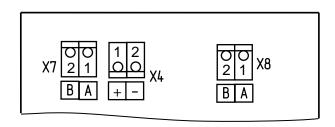


Рисунок Д.2 – Схема расположения разъемов на плате кросс-блока

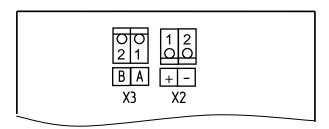
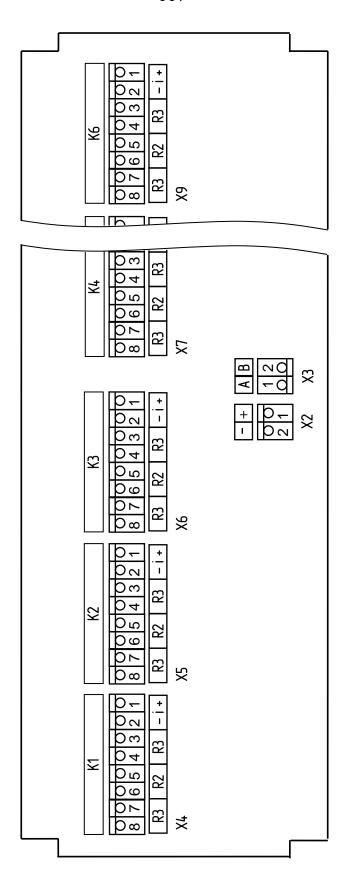



Рисунок Д.3 – Схема расположения разъемов на плате блока управления клапанами

Pисунок Д.4 — Cхема расположения разъемов на плате блока сигнализации

ПРИЛОЖЕНИЕ Е

(справочное)

ИНСТРУКЦИЯ ПО УСТАНОВКЕ ТРУБКИ В ШТУЦЕР ШППТ-6-6F

Е.1 Подготовка трубки

Для этого необходимо:

- 1) убедиться, что внешний диаметр трубки соответствует внутреннему диаметру штуцера ШППТ-6-6F 6 мм;
 - 2) трубка должна иметь отклонения не более:
 - по диаметру \pm 0,1 мм;
 - по толщине стенки \pm 10 %.
- 3) отрезать конец трубки ровно под углом 90° при помощи ручного трубореза или при помощи отрезного инструмента;
 - 4) прямой участок трубки до изгиба должен быть не менее 20 мм;
 - 5) снять фаску с внешней и внутренней кромок трубки.

Е.2 Подготовка штуцера ШППТ-6-6F

Надеть гайку накидную BP63.01.113 (далее – гайка), затем кольцо упорное BP63.01.112 (далее – кольцо упорное) и кольцо BP63.01.111 (далее – кольцо) на конец трубки (рисунок E.1).

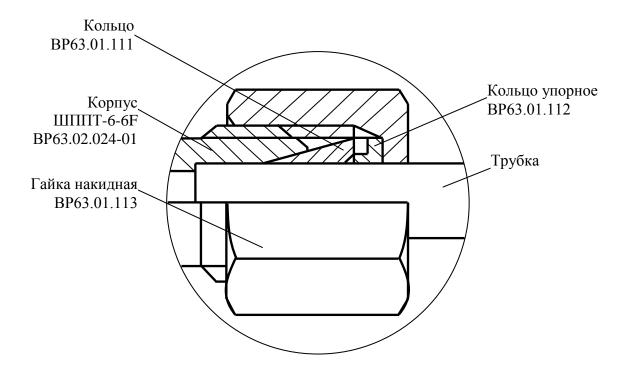


Рисунок Е.1 – Установка трубки в штуцер ШППТ-6-6F ВР63.02.020-06

Е.3 Предварительная сборка

Для этого необходимо:

- вставить трубку в сборе с гайкой, кольцом упорным и кольцом в корпус ШППТ-6-6F BP63.02.024-01 (далее корпус) до упора;
 - накрутить гайку на корпус от руки;
 - затянуть гайку ключом на 1¼ оборота или с моментом затяжки 25 Нм;
 - проверить надежность затяжки трубка не должна проворачиваться.

Е.4 Проверка

Открутить гайку и убедиться в том, что кольцо опрессовано – кольцо не снимается с трубки, но может вращаться.

Е.5 Окончательная сборка

Накрутить гайку на корпус и затянуть гайку ключом, с тем же усилием, как и при предварительной сборке.

ПРИЛОЖЕНИЕ Ж

(справочное)

Протокол обмена с внешним устройством по цифровому интерфейсу Modbus RTU

Ж.1 Типы данных и форматы их представления приведены в таблице Ж.1

Таблица Ж.1

Тип данных	Описание						
b.N	N-битный						
bit8/16/24/32/N	Набор битовых флажков или полей размером 8/16/24/32 / N бит.						
uint8/16/32/N	Беззнаковое целое длиной 1/2/4 байта / N бит.						
float32	Число с плавающей точкой одинарной точности размером 4 байта (IEEE 754-2008)						

Ж.2 Физический интерфейс – RS-485, полудуплекс.

Допустимые настройки UART-порта приведены в таблице Ж.2.

Таблииа Ж.2

Параметр	Значение
Допустимые скорости обмена, бит/с	1200, 2400, 4800, 9600, 19200,38400,57600, 115200
Стартовый бит	1 (один)
Бит данных	8 (восемь)
Стоповый бит	1 или 2
Контроль четности	нет, четность, нечетность
Способ передачи	младшим битом вперед (LSB first)

Настройка порта производится в меню «НАСТРОЙКИ»/«RS-485».

Ж.3 Реализованный протокол – MODBUS RTU.

Принципы наложения модели input- / holding-регистров Modbus на данные различных типов при упаковке:

- порядок битов в типах данных и в регистрах Modbus совпадает (младший бит данных «пакуется» в младший бит регистра Modbus).
- младший байт данных «пакуется» в младший байт регистра Modbus, а старший байт данных в старший.
- если тип данных занимает несколько смежных регистров, то младшее слово данных «пакуется» в регистр Modbus с младшим адресом.

Ж.4 Параметры регистровых моделей, общих для анализатора, «регистровая» адресация приведены в таблице Ж.3.

Таблица Ж.3

Адреса регистров	Размер [регистров]	Доступ	Функции	Формат	Параметр	Описание
0x0000	1	R	3,4	bit16	Events	Флаги событий: b.0 – закончились реактивы b.1 – закончилась калибровочная жидкость b.2 – требуется обслуживание b.3 – анализатор неисправен.
0x0001, 0x0002	2	R	3,4	float32	GradSolutionPercentage	(% от максимального объема 2000 мл), количество градуировочного раствора.
0x0003, 0x0004	2	R	3,4	float32	ReagentPercentage	(% от максимального объема 2000 мл), количество реактива в каждом из баллонов.

Ж.5 Параметры регистровых моделей для каналов пробы, «регистровая» адресация приведены в таблице Ж.4.

Таблица Ж.4

Адреса регистров	Разме [регистров]	Доступ	Функции	Формат	Параметр	Описание	
0x1X00, 0x1X01	2	R	3,4	float32	ChX_SiO2	(мкг/дм ³), концентрация кремния.	
0x1X02, 0x1X03	2	R	3,4	float32	ChX_Temp	(°С), температура.	
0x1X04	1	R	3,4	uint16	ChX_SiO2Valid	0 – значение ChX_SiO2 недостоверно.	
0x1X05	1	R	3,4	uint16	ChX_TempValid	0 – значение ChX_Тетр недостоверно.	
Примечание – «Х» – порядковый номер канада пробы							